Skip to main content

Tantalum Electrodes Modified With Well-Aligned Carbon Nanotube–Au Nanoparticles: Application to the Highly Sensitive Electrochemical Determination of Cefazolin


Carbon nanotube/nanoparticle hybrid materials have been proven to exhibit high electrocatalytic activity suggesting broad potential applications in the field of electroanalysis. For the first time, modification of Ta electrode with aligned multi-walled carbon nanotubes/Au nanoparticles introduced for the sensitive determination of the antibiotic drug, cefazolin (CFZ). The electrochemical response characteristics of the modified electrode toward CFZ were investigated by means of cyclic and linear sweep voltammetry. The modified electrode showed an efficient catalytic activity for the reduction of CFZ, leading to a remarkable decrease in reduction overpotential and a significant increase of peak current. Under optimum conditions, the highly sensitive modified electrode showed a wide linear range from 50 pM to 50 μM with a sufficiently low detection limit of 1 ± 0.01 pM (S/N = 3). The results indicated that the prepared electrode presents suitable characteristics in terms of sensitivity (458.2 ± 2.6 μAcm−2/μM), accuracy, repeatability (RSD of 1.8 %), reproducibility (RSD of 2.9 %), stability (14 days), and good catalytic activity in physiological conditions. The method was successfully applied for accurate determination of trace amounts of CFZ in pharmaceutical and clinical preparations without the necessity for samples pretreatment or any time-consuming extraction or evaporation steps prior to the analysis.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    McEvoy GK, Bethesda MD (1990) AHFS, Drug Information, American Society of Hospital Pharmacist, pp 91

  2. 2.

    Hoover, J. R., Dunn, G. L., Jakas, D. R., Lam, L. L., Taggart, J. J., Guarini, J. R., et al. (1974). Semisynthetic cephalosporins. Synthesis and structure-activity relations of 7-mandelamido-3-cephem-4-carboxylic acids. Journal of Medicinal Chemistry, 17, 34–41.

    CAS  Article  Google Scholar 

  3. 3.

    Bebawy, L. I., El Kelani, K., & Abdel Fattah, L. (2003). Fluorimetric determination of some antibiotics in raw material and dosage forms through ternary complex formation with terbium (Tb3+). Journal of Pharmaceutical and Biomedical Analysis, 32, 1219–1225.

    CAS  Article  Google Scholar 

  4. 4.

    Salem, H., & Askal, H. (2002). Colourimetric and AAS determination of cephalosporins using Reineck's salt. Journal of Pharmaceutical and Biomedical Analysis, 29, 347–354.

    CAS  Article  Google Scholar 

  5. 5.

    Farhadi, K., Ghadamgahi, S., Maleki, R., & Asgari, F. S. (2002). Spectrophotometric determination of selected antibiotics using Prussian Blue reaction. Journal of the Chinese Chemical Society, 49, 993–997.

    CAS  Google Scholar 

  6. 6.

    Amin, A. S., & Shama, S. A. (2000). 60-Vanadophosphoric acid as a modified reagent for the spectrophotometric determination of certain cephalosporins and their dosage forms. Monatshefte Chemistry, 131, 313–319.

    CAS  Article  Google Scholar 

  7. 7.

    Nabi, S. A., Abu-Nameh, E. S. M., & Helaleh, M. I. H. (1997). Titrimetrie method followed by spectrophotometric determination of some selected cephalosporins. Chemistry Analytical Warsaw, 42, 881–886.

    CAS  Google Scholar 

  8. 8.

    Crucq, A. S., Slegers, C., Deridder, V., & Tilquin, B. (2000). Radiosensitivity study of cefazolin sodium. Talanta, 52, 873–877.

    CAS  Article  Google Scholar 

  9. 9.

    Mayer, B. X., Petsch, M., Tschernko, E. M., & Muller, M. (2003). Strategies for the determination of cefazolin in plasma and microdialysis samples by short-end capillary zone electrophoresis. Electrophoresis, 24, 1215–1220.

    CAS  Article  Google Scholar 

  10. 10.

    Dhanesar, S. C. (1999). Quantitation of antibiotics by densitometry on a hydrocarbon-impregnated silica gel HPTLC plate, part III: quantitation and evaluation of cephalosporins. Journal Chromatography–Mod TLC, 12, 114–119.

    CAS  Google Scholar 

  11. 11.

    Al-Rawithi, S., Hussein, R., Raines, D. A., Al-Showaier, I., & Kurdi, W. (2000). A sensitive assay for the determination of cefazolin or ceftriaxone in plasma utilizing LC. Journal of Pharmaceutical and Biomedical Analysis, 22, 281–286.

    CAS  Article  Google Scholar 

  12. 12.

    Tsai, T. H., & Chen, Y. F. (2000). Simultaneous determination of cefazolin in rat blood and brain by microdialysis and microbore liquid chromatography. Biomedical Chromatography, 14, 274–278.

    CAS  Article  Google Scholar 

  13. 13.

    Tyczkowska, K., Aucoin, D. P., Richardson, D. C., & Aronson, A. L. (1987). Ion-paired liquid chromatographic determination of cefazolin in canine serum and tissues. Journal of Liquid Chromatography, 10, 2613–2624.

    CAS  Article  Google Scholar 

  14. 14.

    Bayoumi, S. M., Vallner, J. J., & Dipiro, J. T. (1986). Quantitation of cefazolin sodium in plasma and tissues by high-performance liquid chromatography. International Journal of Pharmaceutics, 30, 57–61.

    CAS  Article  Google Scholar 

  15. 15.

    Wold, J. S., & Turnipseed, S. A. (1977). The simultaneous quantitative determination of cephalothin and cefazolin in serum by high pressure liquid chromatography. Clinica Chimica Acta, 78, 203–207.

    CAS  Article  Google Scholar 

  16. 16.

    Sorensen, L. K., & Snor, L. K. (2000). Determination of cephalosporins in raw bovine milk by high-performance liquid chromatography. Journal of Chromatography A, 882, 145–151.

    CAS  Article  Google Scholar 

  17. 17.

    Moore, C. M., Sato, K., & Katsumata, Y. (1991). High-performance liquid chromatographic determination of cephalosporin antibiotics using 0.3 mm I.D. columns. Journal of Chromatography, 539, 215–220.

    CAS  Article  Google Scholar 

  18. 18.

    Ogorevc, B., Krasna, A., Hudnik, V., & Gomiscek, S. (1991). Adsorptive stripping voltammetry of selected cephalosporin antibiotics and their direct determination in urine. Mikrochimica Acta, 1, 131–144.

    CAS  Article  Google Scholar 

  19. 19.

    Munoz, E., Avila, J. L., Camacho, L., Cosano, J. E., & Garcia-Blanco, F. (1988). Study of the adsorption and surface reduction of cefazolin by cyclic voltammetry. Electroanalytical Chemistry, 257, 281–292.

    CAS  Article  Google Scholar 

  20. 20.

    Munoz, E., Camacho, L., Avila, J. L., & Garcia-Blanco, F. (1988). Electrochemical reduction of cefsulodin. Analyst, 113, 23–27.

    CAS  Article  Google Scholar 

  21. 21.

    Rickard, E. C., & Cookc, G. G. (1977). Electrochemical analysis of the cephalosporin cefamandole nafate. Journal of Pharmaceutical Sciences, 66, 379–382.

    CAS  Article  Google Scholar 

  22. 22.

    Fogg, A. G., Fayad, N. M., Burgess, C., & McGlynn, A. (1979). Differential pulse polarographic determination of cephalosporins and their degradation products. Analytica Chimica Acta, 108, 205–211.

    CAS  Article  Google Scholar 

  23. 23.

    Sengiin, F. I., Ulas, K., & Fedai, I. (1985). Analytical investigations of cephalosporins—II. Polarographic behaviour of ceftriaxone, cefuroxime, cefotaxime and ceftizoxime and assay of their formulations. Journal of Pharmaceutical and Biomedical Analysis, 3, 191–199.

    Article  Google Scholar 

  24. 24.

    Britton, H. T. S. (1952). Hydrogen Ions (p. 113). London: Chapman and Hall.

    Google Scholar 

  25. 25.

    Zhang, W. D., Wen, Y., Liu, S. M., Tjiu, W. C., Xu, G. Q., & Gan, L. M. (2002). Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon, 40, 1981–1989.

    CAS  Article  Google Scholar 

  26. 26.

    Dolati, A., Ghorbani, M., & Ahmadi, M. R. (2005). An electrochemical study of Au–Ni alloy electrodeposition from cyanide–citrate electrolytes. Journal of Electroanalytical Chemistry, 577, 1–8.

    CAS  Article  Google Scholar 

  27. 27.

    Marken, F., Gerrard, M. L., Mellor, I. M., Mortimer, R. J., Madden, C. E., Fletcher, S., et al. (2001). Voltammetry at carbon nanofiber electrodes. Electrochemistry Communications, 3, 177–180.

    CAS  Article  Google Scholar 

  28. 28.

    Bollo, S., Nunez-Vergara, L. J., Bonta, M., Chauviere, G., Perie, J., & Squella, J. A. (2001). Cyclic voltammetric studies on nitro radical anion formation from megazol and some related nitroimidazole derivatives. Journal of Electroanalytical Chemistry, 511, 46–54.

    CAS  Article  Google Scholar 

  29. 29.

    Hilali, A., Jimenez, J. C., Callejon, M., Bello, M. A., & Guiraum, A. (2003). Electrochemical reduction of cefminox at the mercury electrode and its voltammetric determination in urine. Talanta, 59, 137–146.

    CAS  Article  Google Scholar 

  30. 30.

    Munoz, E., Avila, J. L., & Camacho, L. (1990). Voltammetric study of cefsulodin: surface reduction of the isonicotinamide substituent via an ECE mechanism. Journal of Electroanalytical Chemistry, 282, 189–200.

    CAS  Article  Google Scholar 

  31. 31.

    Munoz, E., Avila, J. L., Doctor, J. P., & Camacho, L. (1993). The transfer coefficient of the electrochemical reduction of cephalosporins and cefamycins. Electroanalysis, 5, 325–331.

    CAS  Article  Google Scholar 

  32. 32.

    Zhang, Y., Kang, T. F., Wan, Y. W., & Chen, S. U. (2009). Gold nanoparticles-carbon nanotubes modified sensor for electrochemical determination of organophosphate pesticides. Microchimica Acta, 165, 307–311.

    CAS  Article  Google Scholar 

  33. 33.

    Hall, D. A., Berry, D. M., & Schneider, C. J. (1977). Polarography of cepha-losporin derivatives. Journal of Electroanalytical Chemistry, 80, 155–160.

    CAS  Article  Google Scholar 

  34. 34.

    Ochiai, H., Aki, O., Morimoto, A., Okada, T., Shinozaki, K., & Asahi, Y. (1974). Electrochemical reduction of cephalosporanic acids. Journal of the Chemical Society, Perkin Transactions, 1, 258–262.

    Article  Google Scholar 

  35. 35.

    Hall, D. A. (1973). Polarography of cephalosporin C derivatives I: 3-(5-methyl-1,3,4-thiadiazol-2-ylthiomethyl)-7-[2-(3-sydnone)-acetamido]-3-cephem-4-carboxylic acid, sodium salt. Journal of Pharmaceutical Sciences, 62, 980–983.

    CAS  Article  Google Scholar 

  36. 36.

    Nicholson, R. S., & Shain, I. (1964). Theory of stationary electrode polarography single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Analytical Chemistry, 36, 706–723.

    CAS  Article  Google Scholar 

  37. 37.

    Zhang, Z., & Wang, E. (2000). Electrochemical principles and methods (p. 242). Beijing: Science Press.

    Google Scholar 

  38. 38.

    Munoz, E., Camacho, L., & Avila, J. L. (1989). Cyclic and linear sweep voltammetry of cefazolin and cefmetazole: electroanalytical applications. Analyst, 114, 1611–1615.

    CAS  Article  Google Scholar 

  39. 39.

    El-Desoky, H. S., Ghoneim, E. M., & Ghoneim, M. M. (2005). Voltammetric behavior and assay of the antibiotic drug cefazolin sodium in bulk form and pharmaceutical formulation at a mercury electrode. Journal of Pharmaceutical Biomedical, 39, 1051–1056.

    CAS  Article  Google Scholar 

  40. 40.

    Baranowska, I., Markowski, P., Gerle, A., & Baranowski, J. (2008). Determination of selected drugs in human urine by differential pulse voltammetry technique. Bioelectrochemistry, 73, 5–10.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Abdollah Afshar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fayazfar, H., Afshar, A. & Dolati, A. Tantalum Electrodes Modified With Well-Aligned Carbon Nanotube–Au Nanoparticles: Application to the Highly Sensitive Electrochemical Determination of Cefazolin. Appl Biochem Biotechnol 173, 1511–1528 (2014).

Download citation


  • Multi-walled carbon nanotube
  • Au nanoparticle
  • Voltammetry
  • Electrochemical sensor
  • Cefazolin
  • Electrochemistry