Skip to main content
Log in

Influence of the Carbon Source on Gordonia alkanivorans Strain 1B Resistance to 2-Hydroxybiphenyl Toxicity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The viability of bacteria plays a critical role in the enhancement of fossil fuels biodesulfurization efficiency since cells are exposed to toxic compounds such as 2-hydroxybiphenyl (2-HBP), the end product of dibenzothiophene (DBT) biodesulfurization. The goal of this work was to study the influence of the carbon source on the resistance of Gordonia alkanivorans strain 1B to 2-HBP. The physiological response of this bacterium, pre-grown in glucose or fructose, to 2-HBP was evaluated using two approaches: a growth inhibition toxicity test and flow cytometry. The results obtained from the growth inhibition bioassays showed that the carbon source has an influence on the sensitivity of strain 1B growing cells to 2-HBP. The highest IC50 value was obtained for the assay using fructose as carbon source in both inoculum growth and test medium (IC50-48 h = 0.464 mM). Relatively to the evaluation of 2-HBP effect on the physiological state of resting cells by flow cytometry, the results showed that concentrations of 2-HBP >1 mM generated significant loss of cell viability. The higher the 2-HBP concentration, the higher the toxicity effect on cells and the faster the loss of cell viability. In overall, the flow cytometry results highlighted that strain 1B resting cells grown in glucose-SO4 or glucose-DBT are physiologically less resistant to 2-HBP than resting cells grown in fructose-SO4 or fructose-DBT, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Srivastava, V. C. (2012). RSC Advances, 2, 759–783.

    Article  Google Scholar 

  2. Gupta, N., Roychoudhury, P. K., & Deb, J. K. (2005). Applied Microbiology and Biotechnology, 66, 356–366.

    Article  CAS  Google Scholar 

  3. Alves, L., Salgueiro, R., Rodrigues, C., Mesquita, E., Matos, J., & Gírio, F. M. (2005). Applied Biochemistry and Biotechnology, 120, 199–208.

    Article  CAS  Google Scholar 

  4. Caro, A., Boltes, K., Letón, P., & García-Calvo, E. (2007). Biochemical Engineering Journal, 35, 191–197.

    Article  CAS  Google Scholar 

  5. Gunam, I. B. W., Yamamura, K., Sujaya, I. N., Antara, N. S., Aryanta, W. R., Tanaka, M., et al. (2013). Journal of Microbiology and Biotechnology, 23, 473–482.

    Article  CAS  Google Scholar 

  6. Chang, J. H., Chang, Y. K., Ryu, H. W., & Chang, H. N. (2000). FEMS Microbiology Letters, 182, 309–312.

    Article  CAS  Google Scholar 

  7. Chen, H., Zhang, W. J., Cai, Y. B., Zhang, Y., & Li, W. (2008). Bioresource Technology, 99, 6928–6933.

    Article  CAS  Google Scholar 

  8. Alves, L., & Paixão, S. M. (2011). Bioresource Technology, 102, 9162–9166.

    Article  CAS  Google Scholar 

  9. Gregori, G., Citterio, S., Ghiani, A., Labra, M., Sgorbati, S., Brown, S., et al. (2001). Applied and Environmental Microbiology, 67, 4662–4670.

    Article  CAS  Google Scholar 

  10. Hewitt, C. J., Bellara, S. R., Andreani, A., Nebe-von-Caron, G., & McFarlane, C. (2001). Biotechnology Letters, 23, 667–675.

    Article  CAS  Google Scholar 

  11. Jacobsen, C. N., Rasmussen, J., & Jakobsen, M. (1997). Journal of Microbiological Methods, 28, 35–43.

    Article  Google Scholar 

  12. Lopes da Silva, T., Roseiro, J. C., & Reis, A. (2012). Trends in Biotechnology, 30, 225–232.

    Google Scholar 

  13. Bouix, M., & Leveau, J. (2001). Journal of the Institute of Brewing, 107, 217–225.

    Article  CAS  Google Scholar 

  14. Alves, L., & Paixão, S. M. (2014). New Biotechnology, 31, 73–79.

    Article  CAS  Google Scholar 

  15. ISO 10712 (1995). Water quality—Pseudomonas putida growth inhibition test (Pseudomonas cell multiplication inhibition). Geneva: International Organization for Standardization.

  16. Paixão, S. M., Teixeira, P. D., Silva, T. P., Teixeira, A. V., & Alves, L. (2013). New Biotechnology, 30, 598–606.

    Article  Google Scholar 

  17. Alves, L., & Paixão, S. M. (2014). Applied Biochemistry and Biotechnology, 172, 3297–3305.

    Article  CAS  Google Scholar 

  18. Borgne, S., & Quintero, R. (2003). Fuel Processing Technology, 81, 155–169.

    Article  Google Scholar 

  19. Amor, K. B., Breeuwer, P., Verbaarschot, P., Rombouts, F. M., Akkermans, A. D. L., De Vos, W. M., et al. (2002). Applied and Environmental Microbiology, 68, 5209–5216.

    Article  Google Scholar 

  20. Davey, H. M., Kaprelyants, A., Weichart, D., & Kell, D. B. (1999). Current protocols in cytometry (pp. 11.13.11–11.13.20). New York: Wiley.

    Google Scholar 

Download references

Acknowledgments

The present work was financed by FEDER funds through POFC-COMPETE and by national funds through Fundação para a Ciência e a Tecnologia (FCT) in the scope of the project Carbon4Desulf—FCOMP-01-0124-FEDER-013932 (Ex–PTDC/AAC-AMB/112841/2009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susana M. Paixão or Luís Alves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, A.V., Paixão, S.M., da Silva, T.L. et al. Influence of the Carbon Source on Gordonia alkanivorans Strain 1B Resistance to 2-Hydroxybiphenyl Toxicity. Appl Biochem Biotechnol 173, 870–882 (2014). https://doi.org/10.1007/s12010-014-0902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0902-6

Keywords

Navigation