Skip to main content
Log in

Biosynthesis of Glucosyl Glycerol, a Compatible Solute, Using Intermolecular Transglycosylation Activity of Amylosucrase from Methylobacillus flagellatus KT

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A putative α-amylase gene (accession number, CP000284) of Methylobacillus flagellatus KT ATCC51484 was cloned in Escherichia coli, and its gene product was expressed and characterized. The purified recombinant enzyme (MFAS) displayed a typical amylosucrase (ASase) activity by the demonstration of multiple activities of hydrolysis, isomerization, and polymerization although it was designated as an α-amylase. The optimal reaction temperature and pH for the sucrose hydrolysis activity of MFAS were determined to be 45 °C and pH 8.5, respectively. MFAS has relatively high thermostable characteristics compared with other ASases, as demonstrated by a half-life of 19.3 min at 50 °C. MFAS also showed polymerization activity using sucrose as a sole substrate. Glycerol was transglycosylated by the intermolecular transglycosylation activity of MFAS. Two major products were observed by thin-layer chromatography and isolated by paper chromatography and recycling HPLC. Using 1H and 13C NMR, their chemical structures were determined to be (2S)-1-O-α-d-glucosyl-glycerol or (2R)-1-O-α-d-glucosyl-glycerol and 2-O-α-d-glucosyl-glycerol, in which a glucose molecule is linked to glycerol via an α-glycosidic linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davies, G., & Henrissat, B. (1995). Structure, 3, 853–859.

    Article  CAS  Google Scholar 

  2. van der Maarel, M. J. E. C., van der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Journal of Biotechnology, 94, 137–155.

    Article  Google Scholar 

  3. Bertoldo, C., & Antranikian, G. (2002). Current Opinion in Chemical Biology, 6, 151–160.

    Article  CAS  Google Scholar 

  4. Seo, D.H., Jung, J.H., Ha, S.J., Yoo, S.H., Kim, T.J., Cha, J., & Park, C.S. (2008). Carbohydrate-active enzyme structure, function and application (Park, K.H., ed.), CRC press, Boca Raton, pp. 125–140.

  5. Albenne, C., Skov, L. K., Mirza, O., Gajhede, M., Feller, G., D'Amico, S., et al. (2004). The Journal of Biological Chemistry, 279, 726–734.

    Article  CAS  Google Scholar 

  6. Wang, R., Bae, J.S., Kim, J.H., Kim, B.S., Yoon, S.H., Park, C.S., & Yoo, S.H. (2012). Food Chemistry. 132, 773–779

  7. Park, H., Choi, K., Park, Y. D., Park, C. S., & Cha, J. (2011). Journal of Life Science, 21, 1631–1635.

    Article  Google Scholar 

  8. Daudé, D., Champion, E., Morel, S., Guieysse, D., Remaud-Siméon, M., & André, I. (2013). ChemCatChem, 5, 2288–2295.

    Article  Google Scholar 

  9. Jung, J.H., Seo, D.H., Ha, S.J., Song, M.C., Cha, J., Yoo, S.H., Kim, T.J., Baek, N.I., Baik, M.Y., & Park, C.S. (2009). Carbohydrate Research. 344, 1612–1619

  10. Seo, D.H., Jung, J.H., Ha, S.J., Song, M.C., Cha, J., Yoo, S.H., Kim, T.J., Baek, N.I., & Park, C.S. (2009). Journal of Molecular Catalysis B: Enzymatic. 60, 113–118

    Google Scholar 

  11. Cho, H. K., Kim, H. H., Seo, D. H., Jung, J. H., Park, J. H., Baek, N. I., et al. (2011). Enzyme Microbial Technology, 49, 246–253.

    Article  CAS  Google Scholar 

  12. Seo, D. H., Jung, J. H., Ha, S. J., Cho, H. K., Jung, D. H., Kim, T. J., et al. (2012). Applied Microbiology and Biotechnology, 94, 1189–1197.

    Article  CAS  Google Scholar 

  13. Potocki De Montalk, G., Remaud-Simeon, M., Willemot, R. M., Planchot, V., & Monsan, P. (1999). Journal of Bacteriology, 181, 375–381.

    Google Scholar 

  14. Pizzut-Serin, S., Potocki-Véronèse, G., van der Veen, B. A., Albenne, C., Monsan, P., & Remaud-Simeon, M. (2005). FEBS Letters, 579, 1405–1410.

    Article  CAS  Google Scholar 

  15. Ha, S. J., Seo, D. H., Jung, J. H., Cha, J., Kim, T. J., Kim, Y. W., et al. (2009). Bioscience Biotechnology and Biochemistry, 73, 1505–1512.

    Article  CAS  Google Scholar 

  16. Seo, D. H., Choi, H. C., Kim, H. H., Yoo, S. H., & Park, C. S. (2012). Journal of Microbiology and Biotechnology, 22, 1253–1257.

    Article  CAS  Google Scholar 

  17. Kim, H. S., Park, H. J., Heu, S., & Jung, J. (2004). Journal of Bacteriology, 186, 411–418.

    Article  CAS  Google Scholar 

  18. Kim, M. I., Kim, H. S., Jung, J., & Rhee, S. (2008). Journal of Molecular Biology, 380, 636–647.

    Article  CAS  Google Scholar 

  19. Mikkat, S., Hagemann, M., & Schoor, A. (1996). Microbiology, 142, 1725–1732.

  20. Marin, K., Zuther, E., Kerstan, T., Kunert, A., & Hagemann, M. (1998). Journal of Bacteriology, 180, 4843–4849.

    CAS  Google Scholar 

  21. Takenaka, F., Uchiyama, H., & Imamura, T. (2000). Bioscience Biotechnology and Biochemistry, 64, 378–385.

    Article  CAS  Google Scholar 

  22. Sawai, T., & Hehre, E. J. (1962). The Journal of Biological Chemistry, 237, 2047–2052.

    CAS  Google Scholar 

  23. Takenaka, F., & Uchiyama, H. (2000). Bioscience Biotechnology and Biochemistry, 64, 1821–1826.

    Article  CAS  Google Scholar 

  24. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al. (1985). Analytical Biochemistry, 150, 76–85.

    Article  CAS  Google Scholar 

  25. Niesen, F. H., Berglund, H., & Vedadi, M. (2007). Nature Protocols, 2, 2212–2221.

    Article  CAS  Google Scholar 

  26. Skov, L. K., Mirza, O., Henriksen, A., De Montalk, G. P., Remaud-Simeon, M., Sarçabal, P., et al. (2001). The Journal of Biological Chemistry, 276, 25273–25278.

    Article  CAS  Google Scholar 

  27. Guérin, F., Barbe, S., Pizzut-Serin, S., Potocki-Véronèse, G., Guieysse, D., Guillet, V., et al. (2012). The Journal of Biological Chemistry, 287, 6642–6654.

    Article  Google Scholar 

  28. Schneider, J., Fricke, C., Overwin, H., Hofmann, B., & Hofer, B. (2009). Applied and Environmental Microbiology, 75, 7453–7460.

    Article  CAS  Google Scholar 

  29. Nakano, H., Kiso, T., Okamoto, K., Tomita, T., Bin Abdul Manan, M., & Kitahata, S. (2003). Journal of Bioscience and Bioengineering, 95, 583–588.

    Article  CAS  Google Scholar 

  30. Goedl, C., Sawangwan, T., Mueller, M., Schwarz, A., & Nidetzky, B. (2008). Angewandte Chemie, International Edition, 47, 10086–10089.

    Article  CAS  Google Scholar 

  31. Schwarz, A., Thomsen, M. S., & Nidetzky, B. (2009). Biotechnology and Bioengineering, 103, 865–872.

    Article  CAS  Google Scholar 

  32. Hinz, S. W. A., Verhoef, R., Schols, H. A., Vincken, J. P., & Voragen, A. G. J. (2005). Carbohydrate Research, 340, 2135–2143.

    Article  CAS  Google Scholar 

  33. Masuda, T., Kawano, A., Kitahara, K., Nagashima, K., Aikawa, Y., & Arai, S. (2003). Journal of Nutritional Science and Vitaminology . (Tokyo) 49, 64–68.

    Google Scholar 

  34. Wei, W., Qi, D., Zhao, H., Lu, Z., Lv, F., & Bie, X. (2013). Food Chemistry, 141, 3085–3092.

    Article  CAS  Google Scholar 

  35. Suhr, R., Scheel, O., & Thiem, J. (1998). Journal of Carbohydrate Chemistry, 17, 937–968.

    Article  CAS  Google Scholar 

  36. Goedl, C., Sawangwan, T., Wildberger, P., & Nidetzky, B. (2010). Biocatalysis and Biotransformation, 28, 10–21.

    Article  CAS  Google Scholar 

  37. Seo, S., Tomita, Y., Tori, K., & Yoshimura, Y. (1978). Journal of the American Chemical Society, 100, 3331–3339.

    Article  CAS  Google Scholar 

  38. Cassel, S., Debaig, C., Benvegnu, T., Chaimbault, P., Lafosse, M., Plusquellec, D., et al. (2001). European Journal of Organic Chemistry, 2001, 875–896.

    Article  Google Scholar 

  39. He, F., Hogan, S., Latypov, R. F., Narhi, L. O., & Razinkov, V. I. (2010). Journal of Pharmaceutical Sciences, 99, 1707–1720.

    CAS  Google Scholar 

  40. Goldberg, D. S., Bishop, S. M., Shah, A. U., & Sathish, H. A. (2011). Journal of Pharmaceutical Sciences, 100, 1306–1315.

    Article  CAS  Google Scholar 

  41. Vedadi, M., Arrowsmith, C. H., Allali-Hassani, A., Senisterra, G., & Wasney, G. A. (2010). Journal of Structural Biology, 172, 107–119.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (No. 2013–031011) and by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2013 (Grant No. C0123542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheon-Seok Park.

Additional information

Jin-Woo Jeong and Dong-Ho Seo contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, JW., Seo, DH., Jung, JH. et al. Biosynthesis of Glucosyl Glycerol, a Compatible Solute, Using Intermolecular Transglycosylation Activity of Amylosucrase from Methylobacillus flagellatus KT. Appl Biochem Biotechnol 173, 904–917 (2014). https://doi.org/10.1007/s12010-014-0889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0889-z

Keywords

Navigation