Skip to main content
Log in

Improved Vitamin B12 Fermentation Process by Adding Rotenone to Regulate the Metabolism of Pseudomonas denitrificans

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Our previous research had revealed that the dissolved oxygen limitation was more favorable for vitamin B12 fermentation, due to its inducement to the increased glycolytic flux in Pseudomonas denitrificans. In this paper, a novel strategy was implemented to further investigate the metabolic characteristics of P. denitrificans under different oxygen supply levels, by exogenously adding rotenone (a respiratory chain inhibitor interfering with the oxygen consumption) to the fermentation broths. Compared to the fermentation process without rotenone treatment, it was observed that 5 mg/L rotenone treatment could significantly strengthen the glycolytic flux of P. denitrificans via activating the key glycolytic enzymes (phosphofructokinase and pyruvate kinase), resulting in the accelerated generations of anterior precursors (glutamate and 5-aminolevulinic acid) for vitamin B12 biosynthesis. Although 5 mg/L rotenone treatment had a negative effect on cell growth of P. denitrificans, the vitamin B12 yield was increased from 48.28 ± 0.62 mg/L to 54.70 ± 0.45 mg/L, which further proved that an increased glycolytic flux in P. denitrificans was a consequence of higher vitamin B12 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Randaccio, L., Geremia, S., Demitri, N., & Wuerges, J. (2010). Vitamin B12: unique metalorganic compounds and the most complex vitamins. Molecules, 15, 3228–3259.

    Article  CAS  Google Scholar 

  2. Takahashi-Iñiguez, T., García-Hernandez, E., Arreguín-Espinosa, R., & Flores, M. E. (2012). Role of vitamin B12 on methylmalonyl-CoA mutase activity. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 13(6), 423–437.

    Article  Google Scholar 

  3. Martins, J. H., Barg, H., Warren, M. J., & Jahn, D. (2002). Microbial production of vitamin B12. Applied Microbiology and Biotechnology, 58, 275–285.

    Article  Google Scholar 

  4. Kang, Z., Zhang, J., Zhou, J., Qi, Q. S., Du, G. C., & Chen, J. (2012). Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnology Advance, 30(6), 1533–1542.

    Article  CAS  Google Scholar 

  5. Li, K. T., Zhou, J., Cheng, X., & Wei, S. J. (2012). Study on the dissolved oxygen control strategy in large-scale vitamin B12 fermentation by Pseudomonas denitrificans. Journal of Chemical Technology and Biotechnology, 87, 1648–1653.

    Article  CAS  Google Scholar 

  6. Li, K. T., Liu, D. H., Chu, J., Wang, Y. H., Zhuang, Y. P., & Zhang, S. L. (2008). An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B12 by Pseudomonas denitrificans. Bioprocess and Biosystems Engineering, 31, 605–610.

    Article  CAS  Google Scholar 

  7. Li, K.T., Liu, D.H., Li, Y.L., Chu, J., Wang, Y.H., Zhuang, Y.P., & Zhang, S.L. (2008). Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding. Bioresource Technology, 99, 8516–8520

    Google Scholar 

  8. Li, K. T., Liu, D. H., Zhuang, Y. P., Wang, Y. H., Chu, J., & Zhang, S. L. (2008). Influence of Zn2+, Co2+ and dimethylbenzimidazole on vitamin B12 biosynthesis by Pseudomonas denitrificans. World Journal of Microbiology and Biotechnology, 24, 2525–2530.

    Article  CAS  Google Scholar 

  9. Wang, Z.J., Wang, H.Y., Li, Y.L., Chu, J., Huang, M.Z., Zhuang, Y.P., & Zhang, S.L. (2010). Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresource Technology, 101(8), 2845–2852

    Google Scholar 

  10. Jain, R., Adhikary, H., Jha, S., Jha, A., & Kumar, G. N. (2012). Remodulation of central carbon metabolic pathway in response to arsenite exposure in Rhodococcus sp. strain NAU-1. Microbial Biotechnology, 5(6), 764–774.

    Article  Google Scholar 

  11. Wiebe, M.G., Rintala, E., Tamminen, A., Simolin, H., Salusjärvi, L., Toivari, M., Kokkonen, J.T., Kiuru, J., Ketola, R.A., Jouhten, P., Huuskonen, A., Maaheimo, H., Ruohonen, L., & Penttilä, M. (2008). Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Research, 8, 140–154

    Google Scholar 

  12. Kamzolova, S.V., Yusupova, A.I., Vinokurova, N.G., Fedotcheva, N.I., M.N., Finogenova, T.V., & Morgunov, I.G. (2009). Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol. Applied Microbiology and Biotechnology, 83, 1027–1034

  13. Liu, X. J., Feng, Y., Fu, M. L., Dong, Y. C., Chen, Q. H., & Jiao, Y. C. (2011). The shock of vacuolar PrA on glycolytic flux, oxidative phosphorylation, and cell morphology by industrial Saccharomyces cerevisiae WZ65. European Food Research and Technology, 233, 941–949.

    Article  CAS  Google Scholar 

  14. Chen, J., Liu, L. M., Li, Y., & Li, H. Z. (2006). Significant increase of glycolytic flux in Torulopsis glabrata by inhibition of oxidative phosphorylation. FEMS Yeast Research, 6, 1117–1129.

    Article  Google Scholar 

  15. Choi, C., Hong, B. S., & Sung, H. C. (1999). Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthase gene of Bradyrhizobium japonicum. Biotechnology Letters, 21, 551–554.

    Article  CAS  Google Scholar 

  16. Ebert, R. F. (1986). Aminoacid analysis by HPLC: optimized conditions for chromatography of phenylthiocarbamyl derivatives. Analytical Biochemistry, 154(2), 431–435.

    Article  CAS  Google Scholar 

  17. Im, A. R., Kim, Y. H., Uddin, M. R., Chae, S., Lee, H. W., Kim, Y. H., et al. (2013). Betaine protects against rotenone-induced neurotoxicity in PC12 cells. Cellular and Molecular Neurobiology, 33, 625–635.

    Article  CAS  Google Scholar 

  18. Warren, M. J., Evelyne, R., Schuber, H. L., & Escalante-Semerena, J. C. (2002). The biosynthesis of adenosylcobalamin (vitamin B12). Nature Product Report, 19, 390–412.

    Article  CAS  Google Scholar 

  19. Jouhten, P., Rintala, E., Huuskonen, A., Tamminen, A., Toivari, M., Wiebe, M., Ruohonen, L., Penttilä, M., & Maaheimo, H. (2008). Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Systems Biology, 60(2), 1–19

    Google Scholar 

  20. Sanchez, S., & Demain, A. L. (2002). Metabolic regulation of fermentation processes. Enzyme and Microbial Technology, 31, 895–906.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 31060009), the Natural Science Foundation of Jiangxi Province (Grant No. 2010GQN0062), and School Foundation of JXAU (No. 2008-2519). We are grateful to the editor and the anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun-Tai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X., Chen, W., Peng, Wf. et al. Improved Vitamin B12 Fermentation Process by Adding Rotenone to Regulate the Metabolism of Pseudomonas denitrificans . Appl Biochem Biotechnol 173, 673–681 (2014). https://doi.org/10.1007/s12010-014-0878-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0878-2

Keywords

Navigation