Skip to main content
Log in

Identification, Cloning and Biochemical Characterization of Pseudomonas putida A (ATCC 12633) Monooxygenase Enzyme necessary for the Metabolism of Tetradecyltrimethylammonium Bromide

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study presents the first report of the purification and characterization of a monooxygenase enzyme from Pseudomonas putida A (ATCC 12633) that is responsible for the oxidation of physiologically relevant quaternary ammonium compounds, the tetradecyltrimethylammonium bromide. The degradation of tetradecyltrimethylammonium bromide by P. putida A (ATCC 12633) is initiated by N-dealkylation and catalysed by tetradecyltrimethylammonium monooxygenase (TTABMO), resulting in the formation of tetradecylalkanal and trimethylamine. Based on sequence analysis, the gene for TTABMO (ttbmo) corresponded to an ORF named PP2033 in the genome of P. putida KT2440. Mutation in ttabmo blocked the utilization of tetradecyltrimethylammonium bromide by Pseudomonas putida A (ATCC 12633) as carbon and nitrogen sources. The enzyme can be highly overexpressed in P. putida Δttabmo-T7 in active form and purified as a hexahistidine fusion protein. Like the native enzyme, the his-TTABMO was found to be a monomer with molecular mass of 40 kDa, the isoelectric point 7.3, that catalyses the breakdown of tetradecyltrimethylammonium bromide and utilized NADPH and FAD as cofactor. The biochemical properties and the analysis of the respective protein sequence revealed that TTABMO represents a typical flavoprotein monooxygenase, which is member of a flavoprotein family that is distinct from Baeyer–Villiger monooxygenases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cross, J. (1994), in, Cationic surfactants, analytical and biological evaluation,surfactant science series (Singer, E.J., ed.), Marcel Dekker, New York, pp. 6–15.

  2. Holah, J.T., Taylor, J.H., Dawson, D.J. & Hall, K.E. (2002) Symposium series (society for applied microbiology) pp. 111S–120S.

  3. van Ginkel, C. G. (1991). Chemosphere, 23, 281–289.

    Article  Google Scholar 

  4. Nishiyama, N., Toshima, Y., & Ikeda, Y. (1995). Chemosphere, 30, 593–603.

    Article  CAS  Google Scholar 

  5. Oh, S., Tandukar, M., Pavlostathis, S. G., Chain, P. S., & Konstantinidis, K. T. (2013). Environmental Microbiology, 15, 2850–2864.

    CAS  Google Scholar 

  6. Takenaka, S., Tonoki, T., Taira, K., Murakami, S., & Aoki, K. (2007). Applied and Environmental Microbiology, 73, 1797–1802.

    Article  CAS  Google Scholar 

  7. Liffourrena, A. S., López, F. G., Salvano, M. A., Domenech, C. E., & Lucchesi, G. I. (2008). Journal of Applied Microbiology, 104, 396–402.

    CAS  Google Scholar 

  8. Liffourrena, A. S., Salvano, M. A., & Lucchesi, G. I. (2010). Archives of Microbiology, 192, 471–476.

    Article  CAS  Google Scholar 

  9. Lucchesi, G.I., Liffourrena, A.S. Boeris, P.S. & Salvano, M.A. (2010), in Current Research, Technology and education topics in applied microbiology and microbial biotechnology (Méndez-Vilas, A., ed.), Badajoz, Formatex, Spain, pp 1297–1303.

  10. Lucchesi, G. I., Lisa, A. T., & Domenech, C. E. (1989). FEMS Microbiology Letter, 57, 335–338.

    Article  CAS  Google Scholar 

  11. Hanahan, D. (1983). Journal of Molecular Biology, 166, 557–580.

    Article  CAS  Google Scholar 

  12. Skipski, V.P. & Barclay, M. (1969), in: Methods in Enzymology, Vol 14 (Lowenstein, J.M., ed.), Academic Press, New York, pp 530–591.

  13. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  14. Sambrook, J., & Russell, D. R. (Eds.). (2001). Molecular cloning: a laboratory manual (2nd ed.). NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  15. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., & Peterson, K. M. (1995). Gene, 166, 175–176.

    Article  CAS  Google Scholar 

  16. Kaniga, K., Delor, I., & Cornelis, G. R. (1991). Gene, 109, 137–141.

    Article  CAS  Google Scholar 

  17. Lee, J. E., & Ahn, T. I. (2000). Research in Microbiology, 151, 605–618.

    Article  CAS  Google Scholar 

  18. Liffourrena, A. S., Boeris, P. S., Salvano, M. A., & Lucchesi, G. I. (2009). Analytical Biochemistry, 384, 343–347.

    Article  CAS  Google Scholar 

  19. Bradford, M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  20. Ferreira, E., Giménez, R., Aguilera, L., Guzmán, K., Aguilar, J., Badia, J., & Baldomà, L. (2013). Research in Microbiology, 164, 145–154.

    Article  CAS  Google Scholar 

  21. Suh, J. K., Poulsen, L. L., Ziegler, D. M., & Robertus, J. D. (1996). Archives of Biochemistry and Biophysics, 336, 268–274.

    Article  CAS  Google Scholar 

  22. Nelson, K. E., Weinel, I. T., Paulsen, R. J., Dodson, H., Hilbert, V. A. O., Martins dos Santos, D. E., et al. (2002). Environmental Microbiology, 4, 799–808.

    Article  CAS  Google Scholar 

  23. Schmidt, A., Schiesswohl, M., Völker, U., Hecker, M., & Schumann, W. (1992). Journal of Bacteriology, 174, 3993–3999.

    CAS  Google Scholar 

  24. Poulsen, L. L., & Ziegler, D. M. (1995). Chemico-Biological Interactions, 96, 57–73.

    Article  CAS  Google Scholar 

  25. van Berkel, W. J. H., Kamerbeek, N. M., & Fraaije, M. W. (2006). Journal of Biotechnology, 124, 670–689.

    Article  Google Scholar 

  26. Massey, V. J. (1994). Biological Chemistry, 269, 22459–22462.

    CAS  Google Scholar 

  27. Alfieri, A., Malito, E., Orru, R., Fraaije, M. W., & Mattevi, A. (2008). PNAS, 105, 86572–86577.

    Article  Google Scholar 

  28. Dym, O., & Eisenberg, D. (2001). Protection Science, 10, 1712–1728.

    Article  CAS  Google Scholar 

  29. Crozier-Reabe, K., & Moran, G. R. (2012). International Journal of Molecular Sciences, 13, 15601–15639.

    Article  CAS  Google Scholar 

  30. Fraaije, M. W., Kamerbeek, N. M., van Berkel, W. J., & Janssen, D. B. (2002). FEBS Letters, 518, 43–47.

    Article  CAS  Google Scholar 

  31. Riebel, A., Dudek, H. M., de Gonzalo, G., Stepniak, P., Rychlewski, L., & Fraaije, M. W. (2012). Applied Microbiology and Biotechnology, 95, 1479–1489.

    Article  CAS  Google Scholar 

  32. Palleroni, N.J. (1992), in Pseudomonas, Molecular Biology and Biotechnology (E. Galli, S. Silver, and B. Witholt, eds.), American Society for Microbiology, Washington DC, USA, pp 105–115.

  33. Hoang, T. T., Kutchma, A. J., Becher, A., & Schweizer, H. P. (2000). Plasmid, 43, 59–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

GIL is Career Members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). ASL is grateful for fellowships from CONICET. This work was supported by grants from CONICET, MinCyT Córdoba and SECYT–UNRC of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria I. Lucchesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liffourrena, A.S., Lucchesi, G.I. Identification, Cloning and Biochemical Characterization of Pseudomonas putida A (ATCC 12633) Monooxygenase Enzyme necessary for the Metabolism of Tetradecyltrimethylammonium Bromide. Appl Biochem Biotechnol 173, 552–561 (2014). https://doi.org/10.1007/s12010-014-0862-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0862-x

Keywords

Navigation