Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 3902–3912 | Cite as

Self-oligomerization of ASC PYD Domain Prevents the Assembly of Inflammasome In Vitro

  • Kannan Badri Narayanan
  • Tae-Ho Jang
  • Hyun Ho ParkEmail author


NALP3 inflammasome, which is an inflammatory caspase-activating complex, is composed of three proteins: NALP3 (an NOD-like receptor), an apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1. NALP3 senses danger signals, while ASC is an adaptor molecule containing two protein interaction modules: pyrin domain (PYD) and caspase recruitment domain (CARD). Caspase-1 is a cysteine protease that uses cysteine as a nucleophile and has a CARD domain for protein interaction. During inflammasome formation, the ASC adaptor acts as a bridge between caspase and NOD-like receptor (NLR) by offering the CARD for CARD–CARD interactions and PYD for PYD–PYD interactions. In the current study, we successfully purified and characterized NALP3 PYD and ASC PYD. The results showed that ASC PYD easily self-oligomerized under physiological conditions, and this self-oligomerization of the ASC PYD prevented complex formation with NALP3 PYD in vitro.


Inflammation Inflammasome Caspase-1 NALP3 ASC 



This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) of the Ministry of Education, Science and Technology (2013009083) and a grant from the Korea Healthcare Technology R&D project, Ministry of Health & Welfare, Republic of Korea (HI13C1449).


  1. 1.
    Ghayur, T., Banerjee, S., Hugunin, M., Butler, D., Herzog, L., Carter, A., Quintal, L., Sekut, L., Talanian, R., Paskind, M., Wong, W., Kamen, R., Tracey, D., & Allen, H. (1997). Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature, 386, 619–623.CrossRefGoogle Scholar
  2. 2.
    Kanneganti, T. D., Ozoren, N., Body-Malapel, M., Amer, A., Park, J. H., Franchi, L., Whitfield, J., Barchet, W., Colonna, M., Vandenabeele, P., Bertin, J., Coyle, A., Grant, E. P., Akira, S., & Nunez, G. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature, 440, 233–236.CrossRefGoogle Scholar
  3. 3.
    Sutterwala, F. S., Ogura, Y., Szczepanik, M., Lara-Tejero, M., Lichtenberger, G. S., Grant, E. P., Bertin, J., Coyle, A. J., Galan, J. E., Askenase, P. W., & Flavell, R. A. (2006). Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity, 24, 317–327.CrossRefGoogle Scholar
  4. 4.
    Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B. T., & Tschopp, J. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 320, 674–677.CrossRefGoogle Scholar
  5. 5.
    Martinon, F., Burns, K., & Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell, 10, 417–426.CrossRefGoogle Scholar
  6. 6.
    Davis, B. K., Wen, H., & Ting, J. P. (2011). The inflammasome NLRs in immunity, inflammation, and associated diseases. Annual Review of Immunology, 29, 707–735.CrossRefGoogle Scholar
  7. 7.
    Agostini, L., Martinon, F., Burns, K., McDermott, M. F., Hawkins, P. N., & Tschopp, J. (2004). NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity, 20, 319–325.CrossRefGoogle Scholar
  8. 8.
    Schroder, K., & Tschopp, J. (2010). The inflammasomes. Cell, 140, 821–832.CrossRefGoogle Scholar
  9. 9.
    Bae, J. Y., & Park, H. H. (2011). Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. Journal of Biological Chemistry, 286, 39528–39536.CrossRefGoogle Scholar
  10. 10.
    Martinon, F. (2008). Detection of immune danger signals by NALP3. Journal of Leukocyte Biology, 83, 507–511.CrossRefGoogle Scholar
  11. 11.
    Duncan, J. A., Bergstralh, D. T., Wang, Y., Willingham, S. B., Ye, Z., Zimmermann, A. G., & Ting, J. P. (2007). Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proceedings of the National Academy of Sciences of the United States of America, 104, 8041–8046.CrossRefGoogle Scholar
  12. 12.
    Shiohara, M., Taniguchi, S., Masumoto, J., Yasui, K., Koike, K., Komiyama, A., & Sagara, J. (2002). ASC, which is composed of a PYD and a CARD, is up-regulated by inflammation and apoptosis in human neutrophils. Biochemical and Biophysical Research Communications, 293, 1314–1318.CrossRefGoogle Scholar
  13. 13.
    Srimathi, T., Robbins, S. L., Dubas, R. L., Chang, H., Cheng, H., Roder, H., & Park, Y. C. (2008). Mapping of POP1-binding site on pyrin domain of ASC. Journal of Biological Chemistry, 283, 15390–15398.CrossRefGoogle Scholar
  14. 14.
    Park, H. H. (2012). PYRIN domains and their interactions in the apoptosis and inflammation signaling pathway. Apoptosis, 17, 1247–1257.CrossRefGoogle Scholar
  15. 15.
    Franchi, L., Eigenbrod, T., Munoz-Planillo, R., & Nunez, G. (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology, 10, 241–247.CrossRefGoogle Scholar
  16. 16.
    Jang, T. H., & Park, H. H. (2011). Generalized semi-refolding methods for purification of the functional death domain superfamily. Journal of Biotechnology, 151, 335–342.CrossRefGoogle Scholar
  17. 17.
    Park, H. H. (2011). Structural analyses of death domains and their interactions. Apoptosis, 16, 209–220.CrossRefGoogle Scholar
  18. 18.
    Dzivenu, O. K., Park, H. H., & Wu, H. (2004). General co-expression vectors for the overexpression of heterodimeric protein complexes in Escherichia coli. Protein Expression and Purification, 38, 1–8.CrossRefGoogle Scholar
  19. 19.
    Chen, Y. H., Yang, J. T., & Martinez, H. M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11, 4120–4131.CrossRefGoogle Scholar
  20. 20.
    Jang, T. H., Bae, J. Y., Park, O. K., Kim, J. H., Cho, K. H., Jeon, J. H., & Park, H. H. (2010). Identification and analysis of dominant negative mutants of RAIDD and PIDD. Biochimica et Biophysica Acta, 1804, 1557–1563.CrossRefGoogle Scholar
  21. 21.
    Park, H. H., Logette, E., Rauser, S., Cuenin, S., Walz, T., Tschopp, J., & Wu, H. (2007). Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell, 128, 533–546.CrossRefGoogle Scholar
  22. 22.
    Wang, L., Yang, J. K., Kabaleeswaran, V., Rice, A. J., Cruz, A. C., Park, A. Y., Yin, Q., Damko, E., Jang, S. B., Raunser, S., Robinson, C. V., Siegel, R. M., Walz, T., & Wu, H. (2010). The Fas-FADD death domain complex structure reveals the basis of DISC assembly and disease mutations. Nature Structural and Molecular Biology, 17, 1324–1329.CrossRefGoogle Scholar
  23. 23.
    Lin, S. C., Lo, Y. C., & Wu, H. (2010). Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature, 465, 885–890.CrossRefGoogle Scholar
  24. 24.
    Qin, H., Srinivasula, S. M., Wu, G., Fernandes-Alnemri, T., Alnemri, E. S., & Shi, Y. (1999). Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature, 399, 549–557.CrossRefGoogle Scholar
  25. 25.
    Kwon, D., Yoon, J. H., Shin, S. Y., Jang, T. H., Kim, H. G., So, I., Jeon, J. H., & Park, H. H. (2011). A comprehensive manually curated protein-protein interaction database for the Death Domain superfamily. Nucleic Acids Research, 40, D331–D336.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kannan Badri Narayanan
    • 1
  • Tae-Ho Jang
    • 1
  • Hyun Ho Park
    • 1
    Email author
  1. 1.Department of Biochemistry, School of Biotechnology and Graduate School of BiochemistryYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations