Skip to main content

Proteolytic Activities of Kiwifruit Actinidin (Actinidia deliciosa cv. Hayward) on Different Fibrous and Globular Proteins: A Comparative Study of Actinidin with Papain

Abstract

Actinidin, a member of the papain-like family of cysteine proteases, is abundant in kiwifruit. To date, a few studies have been provided to investigate the proteolytic activity and substrate specificity of actinidin on native proteins. Herein, the proteolytic activity of actinidin was compared to papain on several different fibrous and globular proteins under neutral, acidic and basic conditions. The digested samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry to assess the proteolytic effect. Furthermore, the levels of free amino nitrogen (FAN) of the treated samples were determined using the ninhydrin colorimetric method. The findings showed that actinidin has no or limited proteolytic effect on globular proteins such as immunoglobulins including sheep IgG, rabbit IgG, chicken IgY and fish IgM, bovine serum albumin (BSA), lipid transfer protein (LTP), and whey proteins (α-lactalbumin and β-lactoglobulin) compared to papain. In contrast to globular proteins, actinidin could hydrolyze collagen and fibrinogen perfectly at neutral and mild basic pHs. Moreover, this enzyme could digest pure α-casein and major subunits of micellar casein especially in acidic pHs. Taken together, the data indicated that actinidin has narrow substrate specificity with the highest enzymatic activity for the collagen and fibrinogen substrates. The results describe the actinidin as a mild plant protease useful for many special applications such as cell isolation from different tissues and some food industries as a mixture formula with other relevant proteases.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Salas, C. E., Gomes, M. T., Hernandez, M., & Lopes, M. T. (2008). Phytochemistry, 69, 2263–2269.

    Article  CAS  Google Scholar 

  2. 2.

    Nieuwenhuizen, N. J., Maddumage, R., Tsang, G. K., Fraser, L. G., Cooney, J. M., De Silva, H. N., et al. (2012). Plant Physiology, 158, 376–388.

    Article  CAS  Google Scholar 

  3. 3.

    Kang, G. H., Kim, S. H., Kim, J. H., Kang, H. K., Kim, D. W., Seong, P. N., et al. (2012). Poultry Science, 91, 232–236.

    Article  CAS  Google Scholar 

  4. 4.

    Arcus, A. C. (1959). Biochimica et Biophysica Acta, 33, 242–244.

    Article  CAS  Google Scholar 

  5. 5.

    Pickersgill, R. W., Sumner, I. G., Collins, M. E., & Goodenough, P. W. (1989). The Biochemical Journal, 257, 310–312.

    Article  CAS  Google Scholar 

  6. 6.

    Kamphuis, I. G., Drenth, J., & Baker, E. N. (1985). Journal of Molecular Biology, 182, 317–329.

    Article  CAS  Google Scholar 

  7. 7.

    Malone, L. A., Todd, J. H., Burgess, E. P. J., Philip, B. A., & Christeller, J. T. (2005). New Zealand Journal of Crop and Horticultural Science, 33, 99–105.

    Article  CAS  Google Scholar 

  8. 8.

    Kaur, L., Rutherfurd, S. M., Moughan, P. J., Drummond, L., & Boland, M. J. (2010). Journal of Agricultural and Food Chemistry, 58, 5074–5080.

    Article  CAS  Google Scholar 

  9. 9.

    Kaur, L., Rutherfurd, S. M., Moughan, P. J., Drummond, L., & Boland, M. J. (2010). Journal of Agricultural and Food Chemistry, 58, 5068–5073.

    Article  CAS  Google Scholar 

  10. 10.

    Rutherfurd, S. M., Montoya, C. A., Zou, M. L., Moughan, P. J., Drummond, L. N., & Boland, M. J. (2011). Food Chemistry, 129, 1681–1689.

    Article  CAS  Google Scholar 

  11. 11.

    Christensen, M., Tørngren, M. A., Gunvig, A., Rozlosnik, N., Lametsch, R., Karlsson, A. H., et al. (2009). Journal of the Science of Food and Agriculture, 89, 1607–1614.

    Article  CAS  Google Scholar 

  12. 12.

    Alirezaei, M., Aminlari, M., Gheisari, H. R., & Tavana, M. (2011). European Journal of Food Research & Review, 1, 43–51.

    Google Scholar 

  13. 13.

    Boland, M. J., & Hardman, M. J. (1972). FEBS Letters, 27, 282–284.

    Article  CAS  Google Scholar 

  14. 14.

    Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  15. 15.

    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  16. 16.

    Lie, S. (1973). Journal of the Institute of Brewing, 79, 37–41.

    Article  CAS  Google Scholar 

  17. 17.

    Kadler, K. E., Baldock, C., Bella, J., & Boot-Handford, R. P. (2007). Journal of Cell Science, 120, 1955–1958.

    Article  CAS  Google Scholar 

  18. 18.

    González-Rábade, N., Badillo-Corona, J. A., Aranda-Barradas, J. S., & Oliver-Salvador, M. C. (2011). Biotechnology Advances, 29, 983–996.

    Article  Google Scholar 

  19. 19.

    Vernet, T., Khouri, H. E., Laflamme, P., Tessier, D. C., Musil, R., Gour-Salin, B. J., et al. (1991). Journal of Biological Chemistry, 266, 21451–21457.

    CAS  Google Scholar 

  20. 20.

    Murachi, T., Yasui, M., & Yasuda, Y. (1964). Biochemistry, 3, 48–55.

    Article  CAS  Google Scholar 

  21. 21.

    Devaraj, K. B., Kumar, P. R., & Prakash, V. (2008). Journal of Agricultural and Food Chemistry, 56, 11417–11423.

    Article  CAS  Google Scholar 

  22. 22.

    Lo Piero, A., Puglisi, I., & Petrone, G. (2011). European Food Research and Technology, 233, 517–524.

    Article  CAS  Google Scholar 

  23. 23.

    Puglisi, I., Petrone, G., & Lo Piero, A. R. (2012). Food and Bioproducts Processing, 90, 449–452.

    Article  CAS  Google Scholar 

  24. 24.

    Aminlari, M., Shekarforoush, S. S., Gheisari, H. R., & Golestan, L. (2009). Journal of Food Science, 74, C221–C226.

    Article  CAS  Google Scholar 

  25. 25.

    Lieske, B., & Konrad, G. (1996). International Dairy Journal, 6, 359–370.

    Article  CAS  Google Scholar 

  26. 26.

    Vázquez-Lara, L. R., Tello-Solís, S., Gómez-Ruiz, L., García-Garibay, M., & Rodríguez-Serrano, G. M. (2003). Food Biotechnology, 17, 117–128.

    Article  Google Scholar 

  27. 27.

    Reddy, I. M., Kella, N. K. D., & Kinsella, J. E. (1988). Journal of Agricultural and Food Chemistry, 36, 737–741.

    Article  CAS  Google Scholar 

  28. 28.

    Mostafaie, A., Bidmeshkipour, A., Shirvani, Z., Mansouri, K., & Chalabi, M. (2008). Applied Biochemistry and Biotechnology, 144, 123–131.

    Article  CAS  Google Scholar 

  29. 29.

    Yarani, R., Mansouri, K., Mohammadi-Motlagh, H. R., Bakhtiari, M., & Mostafaie, A. (2013). Cell Proliferation, 46, 348–355.

    Article  CAS  Google Scholar 

  30. 30.

    Ghobadi, S., Yousefi, F., Khademi, F., Padidar, S., & Mostafaie, A. (2012). Journal of Separation Science, 35, 2827–2833.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial supports from the Research Councils of Kermanshah University of Medical Sciences and Medical Biology Research Center are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Mostafaie.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chalabi, M., Khademi, F., Yarani, R. et al. Proteolytic Activities of Kiwifruit Actinidin (Actinidia deliciosa cv. Hayward) on Different Fibrous and Globular Proteins: A Comparative Study of Actinidin with Papain. Appl Biochem Biotechnol 172, 4025–4037 (2014). https://doi.org/10.1007/s12010-014-0812-7

Download citation

Keywords

  • Actinidin
  • Kiwifruit
  • Papain
  • Protease
  • Protein