Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 8, pp 4025–4037 | Cite as

Proteolytic Activities of Kiwifruit Actinidin (Actinidia deliciosa cv. Hayward) on Different Fibrous and Globular Proteins: A Comparative Study of Actinidin with Papain

  • Maryam Chalabi
  • Fatemeh Khademi
  • Reza Yarani
  • Ali MostafaieEmail author
Article

Abstract

Actinidin, a member of the papain-like family of cysteine proteases, is abundant in kiwifruit. To date, a few studies have been provided to investigate the proteolytic activity and substrate specificity of actinidin on native proteins. Herein, the proteolytic activity of actinidin was compared to papain on several different fibrous and globular proteins under neutral, acidic and basic conditions. The digested samples were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and densitometry to assess the proteolytic effect. Furthermore, the levels of free amino nitrogen (FAN) of the treated samples were determined using the ninhydrin colorimetric method. The findings showed that actinidin has no or limited proteolytic effect on globular proteins such as immunoglobulins including sheep IgG, rabbit IgG, chicken IgY and fish IgM, bovine serum albumin (BSA), lipid transfer protein (LTP), and whey proteins (α-lactalbumin and β-lactoglobulin) compared to papain. In contrast to globular proteins, actinidin could hydrolyze collagen and fibrinogen perfectly at neutral and mild basic pHs. Moreover, this enzyme could digest pure α-casein and major subunits of micellar casein especially in acidic pHs. Taken together, the data indicated that actinidin has narrow substrate specificity with the highest enzymatic activity for the collagen and fibrinogen substrates. The results describe the actinidin as a mild plant protease useful for many special applications such as cell isolation from different tissues and some food industries as a mixture formula with other relevant proteases.

Keywords

Actinidin Kiwifruit Papain Protease Protein 

Notes

Acknowledgments

The financial supports from the Research Councils of Kermanshah University of Medical Sciences and Medical Biology Research Center are gratefully acknowledged.

References

  1. 1.
    Salas, C. E., Gomes, M. T., Hernandez, M., & Lopes, M. T. (2008). Phytochemistry, 69, 2263–2269.CrossRefGoogle Scholar
  2. 2.
    Nieuwenhuizen, N. J., Maddumage, R., Tsang, G. K., Fraser, L. G., Cooney, J. M., De Silva, H. N., et al. (2012). Plant Physiology, 158, 376–388.CrossRefGoogle Scholar
  3. 3.
    Kang, G. H., Kim, S. H., Kim, J. H., Kang, H. K., Kim, D. W., Seong, P. N., et al. (2012). Poultry Science, 91, 232–236.CrossRefGoogle Scholar
  4. 4.
    Arcus, A. C. (1959). Biochimica et Biophysica Acta, 33, 242–244.CrossRefGoogle Scholar
  5. 5.
    Pickersgill, R. W., Sumner, I. G., Collins, M. E., & Goodenough, P. W. (1989). The Biochemical Journal, 257, 310–312.CrossRefGoogle Scholar
  6. 6.
    Kamphuis, I. G., Drenth, J., & Baker, E. N. (1985). Journal of Molecular Biology, 182, 317–329.CrossRefGoogle Scholar
  7. 7.
    Malone, L. A., Todd, J. H., Burgess, E. P. J., Philip, B. A., & Christeller, J. T. (2005). New Zealand Journal of Crop and Horticultural Science, 33, 99–105.CrossRefGoogle Scholar
  8. 8.
    Kaur, L., Rutherfurd, S. M., Moughan, P. J., Drummond, L., & Boland, M. J. (2010). Journal of Agricultural and Food Chemistry, 58, 5074–5080.CrossRefGoogle Scholar
  9. 9.
    Kaur, L., Rutherfurd, S. M., Moughan, P. J., Drummond, L., & Boland, M. J. (2010). Journal of Agricultural and Food Chemistry, 58, 5068–5073.CrossRefGoogle Scholar
  10. 10.
    Rutherfurd, S. M., Montoya, C. A., Zou, M. L., Moughan, P. J., Drummond, L. N., & Boland, M. J. (2011). Food Chemistry, 129, 1681–1689.CrossRefGoogle Scholar
  11. 11.
    Christensen, M., Tørngren, M. A., Gunvig, A., Rozlosnik, N., Lametsch, R., Karlsson, A. H., et al. (2009). Journal of the Science of Food and Agriculture, 89, 1607–1614.CrossRefGoogle Scholar
  12. 12.
    Alirezaei, M., Aminlari, M., Gheisari, H. R., & Tavana, M. (2011). European Journal of Food Research & Review, 1, 43–51.Google Scholar
  13. 13.
    Boland, M. J., & Hardman, M. J. (1972). FEBS Letters, 27, 282–284.CrossRefGoogle Scholar
  14. 14.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  15. 15.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  16. 16.
    Lie, S. (1973). Journal of the Institute of Brewing, 79, 37–41.CrossRefGoogle Scholar
  17. 17.
    Kadler, K. E., Baldock, C., Bella, J., & Boot-Handford, R. P. (2007). Journal of Cell Science, 120, 1955–1958.CrossRefGoogle Scholar
  18. 18.
    González-Rábade, N., Badillo-Corona, J. A., Aranda-Barradas, J. S., & Oliver-Salvador, M. C. (2011). Biotechnology Advances, 29, 983–996.CrossRefGoogle Scholar
  19. 19.
    Vernet, T., Khouri, H. E., Laflamme, P., Tessier, D. C., Musil, R., Gour-Salin, B. J., et al. (1991). Journal of Biological Chemistry, 266, 21451–21457.Google Scholar
  20. 20.
    Murachi, T., Yasui, M., & Yasuda, Y. (1964). Biochemistry, 3, 48–55.CrossRefGoogle Scholar
  21. 21.
    Devaraj, K. B., Kumar, P. R., & Prakash, V. (2008). Journal of Agricultural and Food Chemistry, 56, 11417–11423.CrossRefGoogle Scholar
  22. 22.
    Lo Piero, A., Puglisi, I., & Petrone, G. (2011). European Food Research and Technology, 233, 517–524.CrossRefGoogle Scholar
  23. 23.
    Puglisi, I., Petrone, G., & Lo Piero, A. R. (2012). Food and Bioproducts Processing, 90, 449–452.CrossRefGoogle Scholar
  24. 24.
    Aminlari, M., Shekarforoush, S. S., Gheisari, H. R., & Golestan, L. (2009). Journal of Food Science, 74, C221–C226.CrossRefGoogle Scholar
  25. 25.
    Lieske, B., & Konrad, G. (1996). International Dairy Journal, 6, 359–370.CrossRefGoogle Scholar
  26. 26.
    Vázquez-Lara, L. R., Tello-Solís, S., Gómez-Ruiz, L., García-Garibay, M., & Rodríguez-Serrano, G. M. (2003). Food Biotechnology, 17, 117–128.CrossRefGoogle Scholar
  27. 27.
    Reddy, I. M., Kella, N. K. D., & Kinsella, J. E. (1988). Journal of Agricultural and Food Chemistry, 36, 737–741.CrossRefGoogle Scholar
  28. 28.
    Mostafaie, A., Bidmeshkipour, A., Shirvani, Z., Mansouri, K., & Chalabi, M. (2008). Applied Biochemistry and Biotechnology, 144, 123–131.CrossRefGoogle Scholar
  29. 29.
    Yarani, R., Mansouri, K., Mohammadi-Motlagh, H. R., Bakhtiari, M., & Mostafaie, A. (2013). Cell Proliferation, 46, 348–355.CrossRefGoogle Scholar
  30. 30.
    Ghobadi, S., Yousefi, F., Khademi, F., Padidar, S., & Mostafaie, A. (2012). Journal of Separation Science, 35, 2827–2833.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Maryam Chalabi
    • 1
  • Fatemeh Khademi
    • 2
  • Reza Yarani
    • 2
  • Ali Mostafaie
    • 2
    Email author
  1. 1.Department of Immunology, School of MedicineKermanshah University of Medical SciencesKermanshahIran
  2. 2.Medical Biology Research CenterKermanshah University of Medical SciencesSorkheh LizhehIran

Personalised recommendations