Skip to main content
Log in

Biological Real-Time Reaction Calorimeter Studies for the Production of Penicillin G Acylase from Bacillus badius

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Penicillin G acylase (PGA) is a commercially important enzyme that cleaves penicillin G to 6-amino penicillanic acid (6-APA) and phenyl acetic acid (PAA). The strain Bacillus badius has been identified as potential producer of PGA. A detailed calorimetric investigation on PGA production was carried out to enable generation of thermokinetic data possible for commercial application. Reaction calorimetric studies coupled with respirometric studies suggested that enzyme activity of the species B. badius was calorimetrically traceable. Three phases of growth were distinctly noticeable in the metabolic heat-time curve. Increase in enzymatic activity with restricted growth confirmed intracellular nature of the production process. The estimated heat yields due to biomass growth, 10.026 kJ/g, substrate consumption 22.761 kJ/g, and oxygen uptake 383 ± 10 kJ/mol helped to understand the energetic of the organism under study. Low oxycalorific coefficient confirmed the existence of fermentation-coupled metabolism of B. badius.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Heat transfer area (m2)

Q :

Heat generated (kJ)

Q met (t):

Cumulative metabolic heat (kJ/L)

OUR:

Oxygen uptake rate (mg/L min)

q :

Heat evolution rate (W)

q a :

Heat flow of the acid or base addition (W)

q ac :

Heat accumulation in the bulk (W)

q b1 :

Baseline heat (W)

\( {q}_{{\mathrm{CO}}_2} \) :

Heat flow of the CO2 vaporization (W)

q e :

Heat flow to the environment through the non-jacketed part of the reactor (W)

q f :

Heat flow of the feed (W)

q g :

Heat flow induced by aeration (W)

q j :

Heat flow through the reactor wall to the jacket oil (W)

q s :

Heat flow due to the stirring power (W)

q r :

Heat generated by the reaction (W)

T j :

Temperature of jacket oil (°C)

T r :

Temperature of reactor contents (°C)

U :

Global heat transfer coefficient (W/m2K)

Vvm:

Volume of air per volume of medium per minute (L/L min)

Y Q/X :

Heat yield coefficient with respect to biomass (kJ/g)

Y X/S :

Biomass yield coefficient with respect to substrate (g/g)

Y Q/O :

Heat generated due to oxygen consumed (kJ/mol)

Y Q/S :

Heat yield due to substrate depletion (kJ/g)

Y X/O :

Biomass yield due to oxygen consumption (g/g mol)

O:

Oxygen

S:

Substrate

X:

Biomass

References

  1. Elander, R.-P. (2003). Applied Microbiology and Biotechnology, 61, 385–392.

    Article  CAS  Google Scholar 

  2. Cole, M. (1969). The Biochemical Journal, 115, 733–739.

    Article  CAS  Google Scholar 

  3. Oh, S. J., Kim, Y. C., Park, Y. W., Min, S. Y., Kim, I. S., & Kang, H. S. (1987). Gene, 56, 87–97.

    Article  CAS  Google Scholar 

  4. Barbero, J. L., Buesa, M. J., Gonzalez de Buitrago, G., Mendez, E., Perez Aranda, A., & Garcia, L. J. (1986). Gene, 49, 69–80.

    Article  CAS  Google Scholar 

  5. Konstantinovic, M., Marjanovic, N., Ljubijankic, G., & Glisin, V. (1994). Gene, 143, 79–83.

    Article  CAS  Google Scholar 

  6. Ljubijankic, G. M., Konstantinovic, & Glisin, V. (1992). DNA Sequence, 3, 195–200.

    CAS  Google Scholar 

  7. Martin, L., Prieto, M. A., Cortes, E., & Garcıa, J. L. (1995). FEMS Microbiology Letters, 125, 287–292.

    Article  CAS  Google Scholar 

  8. Verhaert, R. M. D., Riemens, A. M., Laan, J., Duin, J., & Quax, W. J. (1997). Applied and Environmental Microbiology, 63, 3412–3418.

    CAS  Google Scholar 

  9. Corider, J. L., Butsch, B. M., Birou, B., & Von Stockar, U. (1987). Applied Microbiology and Biotechnology, 25, 305–312.

    Article  Google Scholar 

  10. Senthilkumar, S., Surianarayanan, M., & Sudharshan, S. (2008). Biochemical Engineering Journal, 39, 149–156.

    Article  Google Scholar 

  11. Surianarayanan, M., & Senthilkumar, S. (2009). Journal of Chemical Technology and Biotechnology, 84, 1234–1239.

    Article  Google Scholar 

  12. Von Stockar, U., & Marison, I. W. (1989). Adv Biochem Eng, 40, 93–136.

    Google Scholar 

  13. Von Stockar, U., Marison, I. W., & Birou, B. (1987). Bioreactors and biotransformations. London: Elesevier.

    Google Scholar 

  14. Birou, B., Marison, I. W., & Von Stockar, U. (1987). Biotechnology and Bioengineering, 30(5), 50–660.

    Article  Google Scholar 

  15. Marison, I.-W., & Von Stockar, U. (2012). Enz Microbial Technol, 9(1), 33–43.

    Article  Google Scholar 

  16. Balaji, D., Surianarayanan, M., & Mandal, A. B. (2012). Applied Microbiology and Biotechnology, 93(5), 1927–1936.

    Article  Google Scholar 

  17. Schneiders, M., Grosshor, U., & Busch, C. (1995). Applied Microbiology and Biotechnology, 43, 431–439.

    Article  Google Scholar 

  18. Senthilkumar, S., Surianarayanan, M., & Susheela, R. (2008). Bioscience, Biotechnology, and Biochemistry, 72(4), 936–942.

    Article  Google Scholar 

  19. Gustaffson, L. (1991). Thermochimica Acta, 193, 145–171.

    Article  Google Scholar 

  20. Senthilkumar, S., Surianarayanan, M., & Swaminathan, G. (2008). Appl Microbiol Biot, 78, 249–255.

    Article  CAS  Google Scholar 

  21. Jungo, C., Schenk, J., Pasquier, M., Marison, I. W., & Von Stockar, U. (2007). Journal of Biotechnology, 131, 57–66.

    Article  CAS  Google Scholar 

  22. Jungo, C., Marison, I. W., & Von Stockar, U. (2007). Journal of Biotechnology, 130, 236–246.

    Article  CAS  Google Scholar 

  23. Jungo, C., Marison, I. W., & Von Stockar, U. (2007). Journal of Biotechnology, 128, 824–837.

    Article  CAS  Google Scholar 

  24. Marison, I. W., & Von Stockar, U. (1985). Thermochimica Acta, 85, 493–496.

    Article  CAS  Google Scholar 

  25. Wadso, I. (1985). Thermochimica Acta, 88, 35–48.

    Article  Google Scholar 

  26. Cooney, C. L., & Wang, D. I. C. (1968). Biotechnology and Bioengineering, 11, 269.

    Article  Google Scholar 

  27. Von Stockar, U., & Marison, I. W. (1991). Thermochimica Acta, 193, 215.

    Article  Google Scholar 

  28. Turker, M. (2004). Thermochimica Acta, 419, 73–81.

    Article  Google Scholar 

  29. Illanes, A., Torres, R., Cartagena, O., & Ruiz, A. (1993). Biological Research, 26, 357–364.

    CAS  Google Scholar 

  30. Olsson, A., Hagstron, T., Nilsson, B., Uhlen, M., & Gattenbeck, S. (1985). Applied and Environmental Microbiology, 49, 1081–1089.

    Google Scholar 

  31. Rajendhran, J., Krishnakumar, V., & Gunasekaran, P. (2002). Letters in Applied Microbiology, 35, 523–527.

    Article  CAS  Google Scholar 

  32. Balasingham, A., Warburton, D., Dunill, P., & Lilly, D. M. (1972). Biochem Biophy, 276, 230–236.

    Google Scholar 

  33. Miller, G.-L. (1956). Analytical Chemistry, 31, 426–428.

    Article  Google Scholar 

  34. Singh, V. (1996). Biotechnology and Bioengineering, 52, 443–448.

    Article  CAS  Google Scholar 

  35. Chou, C. P., Tseng, J.-H., Lin, M.-I., Lin, H.-K., & Yu, C.-C. (1999). Journal of Biotechnology, 69(1), 27–38.

    Article  CAS  Google Scholar 

  36. Dai, M., Zhu, Y., Yang, Y., Wang, E., Xie, Y., Zhao, G., & Jiang, W. (2001). European Journal of Biochemistry, 268(5), 1298–1303.

    Article  CAS  Google Scholar 

  37. Vandamme, E. J., & Voets, J. P. (1974). Adv App Microbiol, 17, 311–369.

    Article  CAS  Google Scholar 

  38. Surianarayanan, M., Balaji, D., Senthilkumar, S., & AsitBaran, M. (2010). Biotechnology and Bioprocess Engineering, 15, 670–675.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (RK) wishes to acknowledge the Principal of Mepco Schlenk Engineering College for kind permission to publish the paper. The authors wish to express their gratitude to Prof. NR Rajagopal for encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surianarayanan Mahadevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, K., Sekar, S., Mahadevan, S. et al. Biological Real-Time Reaction Calorimeter Studies for the Production of Penicillin G Acylase from Bacillus badius . Appl Biochem Biotechnol 172, 3736–3747 (2014). https://doi.org/10.1007/s12010-014-0800-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0800-y

Keywords

Navigation