Skip to main content

Advertisement

Log in

Screening of a Glucoside 3-Dehydrogenase-Producing Strain, Sphingobacterium faecium, Based on a High-Throughput Screening Method and Optimization of the Culture Conditions for Enzyme Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to screen glucoside 3-dehydrogenase (G3DH)-producing strain based on a high-throughput G3DH screening method. Optimization of culture conditions of the isolated strain was also applied in this study. This screening method employed electron transfer reaction in 96-well microtiter plates, α-methyl-d-glucoside, galactose, 2-deoxy-d-glucose, and 3-O-methyl-d-glucose were used as substrates. Using this screening method, one out of 78 strains isolated from different soil samples was obtained with high G3DH activity. The accuracy of the screening method was proved by alkaline treatment analysis of 3-keto sugars. The isolated strain was identified as Sphingobacterium faecium ZJF-D6 by phenotypic characterization and 16S rDNA sequence analysis. The culture conditions of S. faecium for G3DH production were optimized. Sucrose was found as the most suitable carbon source for the G3DH production. The highest G3DH production and cell growth were achieved using the medium at the initial pH of 7.0 at 25 °C for 36 h with activity of 8.03 × 10−2 U/mL culture. This strain appears promising for potential application in the industry to produce 3-keto sugars. To our knowledge, this is the first report on S. faecium for G3DH production. The method described herein represents a useful tool for the high-throughput isolation of G3DH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Hayano, K., & Fukui, S. (1967). Purification and properties of 3-ketosucrose-forming enzyme from the cells of Agrobacterium tumefaciens. Journal of Biological Chemistry, 242, 3665–3672.

    CAS  Google Scholar 

  2. Kurowski, W. M., Fensom, A. H., & Pirt, S. J. (1975). Factors influencing the formation and stability of d-glucoside 3-dehydrogenase activity in cultures of Agrobacterium tumefaciens. Journal of General Microbiology, 90(2), 191–202. doi:10.1099/00221287-90-2-191.

    Article  CAS  Google Scholar 

  3. Takeuchi, M., Ninomiya, K., Kawabata, K., Asano, N., Kameda, Y., & Matsui, K. (1986). Purification and properties of glucoside 3-dehydrogenase from Flavobacterium saccharophilum. The Journal of Biochemistry, 100(4), 1049–1055.

    CAS  Google Scholar 

  4. Takeuchi, M., Asano, N., Kameda, Y., & Matsui, K. (1988). Purification and properties of soluble d-glucoside 3-dehydrogenase from Flavobacterium saccharophilum. Agricultural and Biological Chemistry, 52(8), 1905–1912.

    Article  CAS  Google Scholar 

  5. Tsugawa, W., Horiuchi, S., Tanaka, M., Wake, H., & Sode, K. (1996). Purification of a marine bacterial glucose dehydrogenase from Cytophaga marinoflava and its application for measurement of 1,5-anhydro-d-glucitol. Applied Biochemistry and Biotechnology, 56, 301–310. doi:10.1007/BF02786960.

    Article  CAS  Google Scholar 

  6. Morrison, S. C., Wood, D. A., & Wood, P. M. (1999). Characterization of a glucose 3-dehydrogenase from the cultivated mushroom (Agaricus bisporus). Applied Microbiology and Biotechnology, 51(1), 58–64. doi:10.1007/s002530051363.

    Article  CAS  Google Scholar 

  7. Kojima, K., Tsugawa, W., Hamahuji, T., Watazu, Y., & Sode, K. (1999). Effect of growth substrates on production of new soluble glucose 3-dehydrogenase in Halomonas (Deleya) sp.-15. Applied Biochemistry and Biotechnology, 77–79, 827–834. doi:10.1007/978-1-4612-1604-9-75.

    Article  Google Scholar 

  8. Maeda, A., Adachi, S., & Matsuno, R. (2001). Improvement of selectivity in 3-keto cellobiose production from cellobiose by Agrobacterium tumefaciens. Biochemical Engineering Journal, 8, 217–221. doi:10.1016/S1369-703X(01)00108-5.

    Article  CAS  Google Scholar 

  9. Maeda, A., Adachi, S., & Matsuno, R. (2003). Chromatographic separation of 3-ketoglucose and glucose or 3-ketocellobiose and cellobiose using a cation-exchange resin in potassium-ion form. Biochemical Engineering Journal, 13, 15–20. doi:10.1016/S1369-703X(02)00081-5.

    Article  CAS  Google Scholar 

  10. Schuerman, P. L., Liu, J. S., Mou, H., & Dandekar, A. M. (1997). 3-Ketoglycoside-mediated metabolism of sucrose in E. coli as conferred by genes from Agrobacterium tumefaciens. Applied Microbiology and Biotechnology, 47, 560–565. doi:10.1007/s002530050973.

    Article  CAS  Google Scholar 

  11. Stoppok, E., Matalla, K., & Buchholz, K. (1992). Microbial modification of sugars as building blocks for chemicals. Applied Microbiology and Biotechnology, 36, 604–610. doi:10.1007/BF00183236.

    Article  CAS  Google Scholar 

  12. Hamafuji, T., Tsugawa, W., & Sode, K. (2002). Clinical application of the serum 1,5-anhydroglucitol assay method using glucose 3-dehydrogenase. Journal of Clinical Laboratory Analysis, 6, 299–303. doi:10.1002/jcla.10054.

    Article  CAS  Google Scholar 

  13. Tsugawa, W., Ogasawara, N., & Sode, K. (1998). Fluorescent measurement of 1,5-anhydro-d-glucitol based on a novel marine bacterial glucose dehydrogenase. Enzyme and Microbial Technology, 22, 269–274. doi:10.1016/S0141-0229(97)00194-4.

    Article  CAS  Google Scholar 

  14. Wang, Y. S., Zheng, Y. G., & Shen, Y. C. (2007). Isolation and identification of a novel valienamine-producing bacterium. Journal of Applied Microbiology, 102(3), 838–844. doi:10.1111/j.1365-2672.2006.03114.x.

    Article  CAS  Google Scholar 

  15. Zhang, J. F., Zheng, Y. G., Liu, Z. Q., & Shen, Y. C. (2007). Preparation of 3-keto validoxylamine A C-N lyase substrate: N-p-nitrophenyl-3-ketovalidamine by Stenotrophomonas maltrophilia CCTCC M 204024. Applied Microbiology and Biotechnology, 73(6), 1275–1281. doi:10.1007/s00253-006-0619-8.

    Article  CAS  Google Scholar 

  16. Zhang, J. F., Zheng, Y. G., & Shen, Y. C. (2006). Purification and characterization of the glucoside 3-dehydrogenase produced by a newly isolated Stenotrophomonas maltrophilia CCTCC M 204024. Applied Microbiology and Biotechnology, 71(5), 638–645. doi:10.1007/s00253-005-0201-9.

    Article  CAS  Google Scholar 

  17. Peters, B., Mientus, M., Kostner, D., Junker, A., Liebl, W., & Ehrenreich, A. (2013). Characterization of membrane-bound dehydrogenases from Gluconobacter oxydans 621H via whole-cell activity assays using multideletion strains. Applied Microbiology and Biotechnology, 97(14), 6397–6412. doi:10.1007/s00253-013-4824-y.

    Article  CAS  Google Scholar 

  18. Kojima, K., Tsugawa, W., & Sode, K. (2001). Cloning and expression of glucose 3-dehydrogenase from Halomonas sp. alpha-15 in Escherichia coli. Biochemical and Biophysical Research Communications, 282(1), 21–27. doi:10.1006/bbrc.2001.4511.

    Article  CAS  Google Scholar 

  19. Fukui, S., & Hayano, K. (1969). Micro methods for determination of 3-keto sucrose and 3-ketoglucose. Agricultural and Biological Chemistry, 33, 1013–1017.

    Article  CAS  Google Scholar 

  20. Krieg, N. R., & Holt, J. G. (1984). Bergey’s manual of 15 systematic bacteriology (Vol. 1). Baltimore: Williams and Wilkins Co.

    Google Scholar 

  21. Sharma, V., Kumar, V., & Archana, G. (2005). Substrate specificity of glucose dehydrogenase (GDH) of Enterobacter asburiae PSI3 and rock phosphate solubilization with GDH substrates as C sources. Canadian Journal of Microbiology, 51, 477–482. doi:10.1139/w05-032.

    Article  CAS  Google Scholar 

  22. Sygmund, C., Staudigl, P., & Klausberger, M. (2011). Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Microbial Cell Factories, 10, 106–114. doi:10.1186/1475-2859-10-106.

    Article  CAS  Google Scholar 

  23. Takeuchi, M., & Yokota, A. (1992). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov., and two genospecies of the genus Sphingobacterium and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. Journal of General and Applied Microbiology, 38(5), 465–482. doi:10.2323/jgam.38.465.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 21102131) and the introducing compound universities to build Innovative carrier of Zhejiang Province (no. 2012E80002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Chen, W., Ke, W. et al. Screening of a Glucoside 3-Dehydrogenase-Producing Strain, Sphingobacterium faecium, Based on a High-Throughput Screening Method and Optimization of the Culture Conditions for Enzyme Production. Appl Biochem Biotechnol 172, 3448–3460 (2014). https://doi.org/10.1007/s12010-014-0773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0773-x

Keyword