Applied Biochemistry and Biotechnology

, Volume 172, Issue 7, pp 3374–3389 | Cite as

Characterization of a New Bacteriocin from Lactobacillus plantarum LE5 and LE27 Isolated from Ensiled Corn

  • Jairo Amortegui
  • Alexander Rodríguez-López
  • Deicy Rodríguez
  • Ana K. Carrascal
  • Carlos J. Alméciga-Díaz
  • Adelina del P. Melendez
  • Oscar F. Sánchez
Article

Abstract

Bacteriocins are low molecular peptides with antimicrobial activity, which are of great interest as food bio-preservatives and for treating diseases caused by pathogenic bacteria. In this study, we present the characterization of bacteriocins produced by Lactobacillus plantarum LE5 and LE27 isolated from ensiled corn. Bacteriocins were purified through ammonium sulfate precipitation and double dialysis by using 12- and 1-kDa membranes. Bacteriocins showed activity against Listeria innocua, Listeria monocytogenes, and Enteroccocus faecalis. Molecular weight was estimated through Tricine-SDS-PAGE and overloading the gel onto Mueller-Hinton agar seeded with L. monocytogenes, showing an inhibition zone between 5 and 10 kDa. NanoLC-MS/MS analysis allowed the identification of UPF0291 protein (UniProtKB/Swiss-Prot Q88VI7), which is also presented in other lactic acid bacteria without assigned function. Ab initio modeling showed it has an α-helix-rich structure and a large positive-charged region. Bacteriocins were stable between 4 and 121 °C and pH 2 and 12, and the activity was inhibited by SDS and proteases. Mode of action assay suggests that the bacteriocin causes of target microorganism. Taken together, these results describe a possible new class IIa bacteriocin produced by L. plantarum, which has a wide stability to physicochemical conditions, and that could be used as an alternative for the control of foodborne diseases.

Keywords

Bacteriocins Lactobacillus plantarum Listeria monocytogenes antimicrobial activity 

References

  1. 1.
    Rajilic-Stojanovic, M., Smidt, H., & de Vos, W. M. (2007). Diversity of the human gastrointestinal tract microbiota revisited. Environmental Microbiology, 9, 2125–2136.CrossRefGoogle Scholar
  2. 2.
    Wallace, T. C., Guarner, F., Madsen, K., Cabana, M. D., Gibson, G., Hentges, E., et al. (2011). Human gut microbiota and its relationship to health and disease. Nutrition Reviews, 69, 392–403.CrossRefGoogle Scholar
  3. 3.
    Dicks, L. M. T., & Botes, M. (2010). Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Benef Microbes, 1, 11–29.CrossRefGoogle Scholar
  4. 4.
    Masood, M. I., Qadir, M. I., Shirazi, J. H., & Khan, I. U. (2011). Beneficial effects of lactic acid bacteria on human beings. Critical Reviews in Microbiology, 37, 91–98.CrossRefGoogle Scholar
  5. 5.
    Badel, S., Bernardi, T., & Michaud, P. (2011). New perspectives for lactobacilli exopolysaccharides. Biotechnology Advances, 29, 54–66.CrossRefGoogle Scholar
  6. 6.
    Servin, A. L. (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews, 28, 405–440.CrossRefGoogle Scholar
  7. 7.
    Benmechernene, Z., Fernandez-No, I., Kihal, M., Böhme, K., Calo-Mata, P., & Barros-Velazquez, J. (2013). Recent patents on bacteriocins: food and biomedical applications. Recent Patents on DNA & Gene Sequences, 7, 66–73.CrossRefGoogle Scholar
  8. 8.
    Hammami, R., Fernandez, B., Lacroix, C., Fliss, I. (2012). Anti-infective properties of bacteriocins: an update. Cell. Mol. Life Sci.Google Scholar
  9. 9.
    Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology, 11, 95–105.CrossRefGoogle Scholar
  10. 10.
    Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3, 777–788.CrossRefGoogle Scholar
  11. 11.
    Drider, D., Fimland, G., Héchard, Y., McMullen, L. M., & Prévost, H. (2006). The continuing story of class IIa bacteriocins. Microbiology and Molecular Biology Reviews, 70, 564–582.CrossRefGoogle Scholar
  12. 12.
    Papagianni, M., & Papamichael, E. M. (2011). Purification, amino acid sequence and characterization of the class IIa bacteriocin weissellin A, produced by Weissella paramesenteroides DX. Bioresource Technology, 102, 6730–6734.CrossRefGoogle Scholar
  13. 13.
    Todorov, S. D., & Dicks, L. M. (2009). Bacteriocin production by Pediococcus pentosaceus isolated from marula (Scerocarya birrea). International Journal of Food Microbiology, 132, 117–126.CrossRefGoogle Scholar
  14. 14.
    Maldonado-Barragan, A., Caballero-Guerrero, B., Jimenez, E., Jimenez-Diaz, R., Ruiz-Barba, J. L., & Rodriguez, J. M. (2009). Enterocin C, a class IIb bacteriocin produced by E. faecalis C901, a strain isolated from human colostrum. International Journal of Food Microbiology, 133, 105–112.CrossRefGoogle Scholar
  15. 15.
    Todorov, S. D., Rachman, C., Fourrier, A., Dicks, L. M. T., van Reenen, C. A., Prévost, H., et al. (2011). Characterization of a bacteriocin produced by Lactobacillus sakei R1333 isolated from smoked salmon. Anaerobe, 17, 23–31.CrossRefGoogle Scholar
  16. 16.
    Hata, T., Tanaka, R., & Ohmomo, S. (2010). Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. International Journal of Food Microbiology, 137, 94–99.CrossRefGoogle Scholar
  17. 17.
    Muñoz, M., Mosquera, A., Alméciga-Díaz, C. J., Melendez, A. P., & Sánchez, O. F. (2012). Fructooligosaccharides metabolism and effect on bacteriocin production in Lactobacillus strains isolated from ensiled corn and molasses. Anaerobe, 18, 321–330.CrossRefGoogle Scholar
  18. 18.
    Todorov, S. D., Ho, P., Vaz-Velho, M., & Dicks, L. M. (2010). Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Science, 84, 334–343.CrossRefGoogle Scholar
  19. 19.
    Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.CrossRefGoogle Scholar
  20. 20.
    Campos, C. A., Rodríguez, Ó., Calo-Mata, P., Prado, M., & Barros-Velázquez, J. (2006). Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Research International, 39, 356–364.CrossRefGoogle Scholar
  21. 21.
    Chevallet, M., Luche, S., & Rabilloud, T. (2006). Silver staining of proteins in polyacrylamide gels. Nature Protocols, 1, 1852–1858.CrossRefGoogle Scholar
  22. 22.
    Xu, D., & Zhang, Y. (2012). Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins, 80, 1715–1735.CrossRefGoogle Scholar
  23. 23.
    Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37, D355–D359.CrossRefGoogle Scholar
  24. 24.
    Martinez, R. C., Wachsman, M., Torres, N. I., LeBlanc, J. G., Todorov, S. D., & Franco, B. D. (2013). Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiology, 34, 376–381.CrossRefGoogle Scholar
  25. 25.
    Nowroozi, J., Mirzaii, M., & Norouzi, M. (2004). Study of Lactobacillus as probiotic bacteria. Iranian Journal of Public Health, 33, 1–7.Google Scholar
  26. 26.
    Cintas, L., Herranz, C., Hernández, P., Casaus, M., & Nes, L. (2001). Review: bacteriocins of lactic acid bacteria. Food Science and Technology International, 7, 281–305.CrossRefGoogle Scholar
  27. 27.
    Todorov, S. D., & Dicks, L. M. (2005). Characterization of bacteriocins produced by lactic acid bacteria isolated from spoiled black olives. Journal of Basic Microbiology, 45, 312–322.CrossRefGoogle Scholar
  28. 28.
    Todorov, S. D., & Dicks, L. M. T. (2006). Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria: comparison of the bacteriocins. Process Biochemistry, 46, 11–19.CrossRefGoogle Scholar
  29. 29.
    Hammami, R., Zouhir, A., Le Lay, C., Ben Hamida, J., & Fliss, I. (2010). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiology, 10, 22.CrossRefGoogle Scholar
  30. 30.
    Todorov, S. D., van Reenen, C. A., & Dicks, L. M. (2004). Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. Journal of General and Applied Microbiology, 50, 149–157.CrossRefGoogle Scholar
  31. 31.
    Zouhir, A., Hammami, R., Fliss, I., & Hamida, J. B. (2010). A new structure-based classification of gram-positive bacteriocins. Protein Journal, 29, 432–439.CrossRefGoogle Scholar
  32. 32.
    Nes, I. F., & Johnsborg, O. (2004). Exploration of antimicrobial potential in LAB by genomics. Current Opinion in Biotechnology, 15, 100–104.CrossRefGoogle Scholar
  33. 33.
    Gálvez, A., Abriouel, H., López, R. L., & Ben Omar, N. (2007). Bacteriocin-based strategies for food biopreservation. International Journal of Food Microbiology, 120, 51–70.CrossRefGoogle Scholar
  34. 34.
    Todorov, S. D., & Dicks, L. M. T. (2005). Lactobacillus plantarum isolated from molasses produces bacteriocins active against Gram-negative bacteria. Enzyme and Microbial Technology, 36, 318–326.CrossRefGoogle Scholar
  35. 35.
    Zapata, S., Muñoz, J., Ruiz, O., Montoya, O., & Gutierrez, P. (2009). Isolation of Lactobacillus plantarum LPBM10 and partial characterization of its bacteriocin. Vitae, 16, 75–82.Google Scholar
  36. 36.
    Mourad, K., Halima, Z.-K., & Nour-Eddine, K. (2005). Detection and activity of plantaricin OL15 a bacteriocin produced by Lactobacillus plantarum OL15 isolated from Algerian fermented olives. Grasas y Aceites, 56, 192–197.CrossRefGoogle Scholar
  37. 37.
    Sowani, H. M., & Thorat, P. (2012). Antimicrobial activity studies of bactoriocin produced by Lactobacilli isolates from carrot kanji. OnLine Journal of Biological Sciences, 12, 6–10.CrossRefGoogle Scholar
  38. 38.
    Lee, N. K., & Paik, H. D. (2001). Partial characterisation of lactocin NK24, a newly identified bacteriocin of Lactococcus lactis NK24 isolated from Jeot-gal. Food Microbiology, 18, 17–24.CrossRefGoogle Scholar
  39. 39.
    Ferchichi, M., Frère, J., Mabrouk, K., & Manai, M. (2001). Lactococcin MMFII, a novel class IIa bacteriocin produced by Lactococcus lactis MMFII, isolated from a Tunisian dairy product. FEMS Microbiology Letters, 205, 49–55.CrossRefGoogle Scholar
  40. 40.
    Todorov, S., & Dicks, L. M. T. (2005). Pediocin ST18, an anti-listerial bacteriocin produced by Pediococcus pentosaceus ST18 isolated from boza, a traditional cereal beverage from Bulgaria. Process Biochemistry, 40, 365–370.CrossRefGoogle Scholar
  41. 41.
    Huot, E., Meghrous, J., Barrena-Gonzalez, C., & Petitdemange, H. (1996). Bacteriocin J46, a new bacteriocin produced by Lactococcus lactis subsp. cremoris J46: isolation and characterization of the protein and its gene. Anaerobe, 2, 137–145.CrossRefGoogle Scholar
  42. 42.
    Nissen-Meyer, J., Rogne, P., Oppegård, C., Haugen, H. S., & Kristiansen, P. E. (2009). Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Current Opinion in Biotechnology, 10, 19–37.Google Scholar
  43. 43.
    Gómez, N. C., Abriouel, H., Grande, M. A., Pulido, R. P., & Gálvez, A. (2012). Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiology, 30, 51–58.CrossRefGoogle Scholar
  44. 44.
    Brandt, A. L., Castillo, A., Harris, K. B., Keeton, J. T., Hardin, M. D., & Taylor, T. M. (2010). Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination. Journal of Food Science, 75, M557–M563.CrossRefGoogle Scholar
  45. 45.
    Neetoo, H., Ye, M., & Chen, H. (2008). Potential antimicrobials to control Listeria monocytogenes in vacuum-packaged cold-smoked salmon pâté and fillets. International Journal of Food Microbiology, 123, 220–227.CrossRefGoogle Scholar
  46. 46.
    Shelburne, C. E., An, F. Y., Dholpe, V., Ramamoorthy, A., Lopatin, D. E., & Lantz, M. S. (2007). The spectrum of antimicrobial activity of the bacteriocin subtilosin A. Journal of Antimicrobial Chemotherapy, 59, 297–300.CrossRefGoogle Scholar
  47. 47.
    Mills, S., Serrano, L. M., Griffin, C., O'Connor, P. M., Schaad, G., Bruining, C., et al. (2011). Inhibitory activity of Lactobacillus plantarum LMG P-26358 against Listeria innocua when used as an adjunct starter in the manufacture of cheese. Microbial Cell Factories, 10(Suppl 1), S7.CrossRefGoogle Scholar
  48. 48.
    Aguilar, C., Vanegas, C., Klotz, B. (2010). Antagonistic effect of Lactobacillus strains against Escherichia coli and Listeria monocytogenes in milk. The Journal of Dairy Research, 3, 1–8.Google Scholar
  49. 49.
    Gong, H. S., Meng, X. C., & Wang, H. (2010). Mode of action of plantaricin MG, a bacteriocin active against Salmonella typhimurium. Journal of Basic Microbiology, 50(Suppl 1), S37–S45.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jairo Amortegui
    • 1
  • Alexander Rodríguez-López
    • 1
  • Deicy Rodríguez
    • 2
  • Ana K. Carrascal
    • 2
  • Carlos J. Alméciga-Díaz
    • 1
    • 5
  • Adelina del P. Melendez
    • 3
  • Oscar F. Sánchez
    • 3
    • 4
  1. 1.Institute for the Study of Inborn Errors of Metabolism, School of SciencesPontificia Universidad JaverianaBogotáColombia
  2. 2.Laboratorio de Microbiología de alimentos, Grupo de Biotecnología Ambiental e Industrial, Departamento de Microbiología, Facultad de CienciasPontificia Universidad JaverianaBogotáColombia
  3. 3.Pharmacy DepartmentUniversidad Nacional de ColombiaBogotáColombia
  4. 4.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA
  5. 5.Protein Expression and Purification Laboratory, Institute for the Study of Inborn Errors of Metabolism School of SciencePontificia Universidad JaverianaBogotáColombia

Personalised recommendations