Skip to main content

Kinetics and Thermodynamics of Ethanol Production by Saccharomyces cerevisiae MLD10 Using Molasses

Abstract

In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48 ± 0.02 g g−1), theoretical yield (93 ± 3 %), and extracellular invertase productivity (1,430 ± 50 IU l−1 h−1), respectively, when fermenting 180 g sugars l−1 in molasses medium at 43 °C in 300 m3 working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M−1) and entropy (ΔS*) (−202.88 J M−1 K−1) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l−1 h−1) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahmed, S., Imdad, S. S., & Jamil, A. (2012). Electronic Journal of Biotechnology. doi:10.2225/vol15-issue3-fulltext-2.

    Google Scholar 

  2. Ahmed, S., Riaz, S., & Jamil, A. (2009). Applied Microbiology and Biotechnology, 84, 19–35.

    Article  CAS  Google Scholar 

  3. Ahmed, S., Bashir, A., Saleem, H., Saadia, M., & Jamil, A. (2009). Pakistan Journal of Botany, 41, 1411–1419.

    CAS  Google Scholar 

  4. Ahmed, S., Jabeen, A., & Jamil, A. (2007). Journal of the Chemical Society of Pakistan, 29, 176–182.

    CAS  Google Scholar 

  5. Ahmed, S., Aslam, N., Latif, F., Rajoka, M. I., & Jamil, A. (2005). Frontiers in Natural Product Chemistry (Vol. 1, pp. 73–75). The Netherlands: Bentham Science.

    Book  Google Scholar 

  6. Ahmed, S., Qurrat-ul-Ain, Aslam, N., Naeem, S., Sajjad-ur-Rehman, & Jamil, A. (2003). Pakistan Journal of Biological Sciences, 6, 1912–1916.

    Article  Google Scholar 

  7. Rajoka, M. I., Ahmed, S., Athar, M., & Hashmi, A. S. (2012). Annals of Microbiology, 62, 1173–1179.

    Article  CAS  Google Scholar 

  8. Irshad, M., Ahmed, S., Latif, F., & Rajoka, M. I. (2008). Journal of the Chemical Society of Pakistan, 30, 913–918.

    CAS  Google Scholar 

  9. Sánchez, Ó. J., & Cardona, C. A. (2008). Bioresource Technology, 99, 5270–5295.

    Article  CAS  Google Scholar 

  10. Wang, M. Q., Han, J., Haq, Z., Tynerc, W. E., Wua, M., & Elgowainy, A. (2011). Biomass and Bioenergy, 35, 1885–1896.

    Article  CAS  Google Scholar 

  11. de Andradea, R. M., Filho, F. M., Filho, R. M., & da Costa, A. C. (2013). Bioresource Technology, 130, 351–359.

    Article  CAS  Google Scholar 

  12. Roukas, T. (1998). Process Biochemistry, 33, 805–810.

    Article  CAS  Google Scholar 

  13. Ahmed, S., Ahmad, F., & Hashmi, A. S. (2010). Pakistan Journal of Botany, 42, 1225–1234.

    CAS  Google Scholar 

  14. Ahmed, S., Afzal, M., & Rajoka, M. I. (2013). Applied Biochemistry and Biotechnology, 170, 81–90.

    Article  CAS  Google Scholar 

  15. Peters, D. (2006). Biotechnology Journal, 1, 806–814.

    Article  CAS  Google Scholar 

  16. Ni, Y., Wang, Y., & Sun, Z. (2012). Applied Biochemistry and Biotechnology, 166, 1896–1907.

    Article  CAS  Google Scholar 

  17. Sattar, M., Ahmed, S., Sheikh, M. A., & Hashmi, A. S. (2008). Journal of the Chemical Society of Pakistan, 30, 642–648.

    CAS  Google Scholar 

  18. Ali, S., Ahmed, S., Sheikh, M. A., Hashmi, A. S., Rajoka, M. I., & Jamil, A. (2009). Journal of the Chemical Society of Pakistan, 31, 97–102.

    CAS  Google Scholar 

  19. Athar, M., Ahmed, S., & Hashmi, A. S. (2009). Journal of the Chemical Society of Pakistan, 31, 115–121.

    CAS  Google Scholar 

  20. da Cunha-Pereira, F., Hickert, L. R., Sehnem, N. T., de Souza-Cruza, P. B., Rosa, C. A., & Ayub, M. A. Z. (2011). Bioresource Technology, 102, 4218–4225.

    Article  CAS  Google Scholar 

  21. Fujitomi, K., Sanda, T., Hasunuma, T., & Kondo, A. (2012). Bioresource Technology, 111, 161–166.

    Article  CAS  Google Scholar 

  22. Laulce, C., Schenberg, A. C. G., Gallardo, J. C. M., Coradello, L. F. C., & Pombeiro-Sponchiado, S. R. (2012). Applied Biochemistry and Biotechnology, 166, 1908–1926.

    Article  CAS  Google Scholar 

  23. da Silva, G. P., de Araújo, E. F., Silva, D. O., & Gui, W. V. (2005). Brazilian Journal of Microbiology, 36, 395–404.

    Article  Google Scholar 

  24. Badotti, F., Marcelo, G. D., Sergio, L. A., Maria, L. A., Cordioli, L. C., & Miletti, P. S. (2009). Microbial Cell Factories, 7, 4. doi:10.1186/1475-2859-7-4.

    Article  CAS  Google Scholar 

  25. Rincon, A. M., Codon, A. C., Castrejon, F., & Benitez, T. (2001). Applied Environmental Microbiology, 67, 4279–4285.

    Article  CAS  Google Scholar 

  26. Sridhar, M., Sree, N. K., & Rao, L. V. (2002). Bioresource Technology, 83, 199–202.

    Article  CAS  Google Scholar 

  27. Arshad, M., Zia, M. A., Asghar, M., & Bhatti, H. N. (2011). Improving bio-ethanol yield using virginiamycin and sodium fluoride at a Pakistani distillery. African Journal of Biotechnology, 10, 11071–11074.

    Google Scholar 

  28. Arshad, M., Khan, Z. M., Rehman, K., Shah, F. A., & Rajoka, M. I. (2008). Letters in Applied Microbiology, 47, 410–414.

    Article  CAS  Google Scholar 

  29. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  30. Rajoka, M. I., Ferhan, M., & Khalid, A. M. (2005). Letters in Applied Microbiology, 40, 316–321.

    Article  CAS  Google Scholar 

  31. Najafpour, G., Younesi, H., & Ismail, K. S. K. (2004). Bioresource Technology, 92, 251–260.

    Article  CAS  Google Scholar 

  32. Ghorbani, F., & Younesi, H. (2013). Energy Sources Part A, 35, 1073–1083.

    Article  CAS  Google Scholar 

  33. Ghorbani, F., Younesi, H., Sari, A. S., & Najafpour, G. (2013). Renewable Energy, 36, 503–509.

    Article  CAS  Google Scholar 

  34. Lawford, H. G., & Rousseau, J. D. (1993). Biotechnology Letters, 15, 615–620.

    Article  CAS  Google Scholar 

  35. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R., & Stephanopoulos, G. (2006). Science, 314, 1565–1568.

    Article  CAS  Google Scholar 

  36. Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Biotechnology Advances, 26, 89–105.

    Article  CAS  Google Scholar 

  37. Pang, Z. W., Liang, J. J., Qin, X. J., Wang, J., Feng, J., & Huang, R. (2010). Multiple induced mutagenesis for improvement of ethanol production by Kluyveromyces marxianus. Biotechnology Letters, 32, 1847–1851.

    Article  CAS  Google Scholar 

  38. Bokhari, S. A., Latif, F., & Rajoka, M. I. (2009). World Journal of Microbiology and Biotechnology, 25, 493–502.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the University of Agriculture, Faisalabad, 38040, Pakistan, and Shakarganj Mills Ltd., Jhang, Pakistan for providing financial support to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sibtain Ahmed or Muhammad Ibrahim Rajoka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arshad, M., Ahmed, S., Zia, M.A. et al. Kinetics and Thermodynamics of Ethanol Production by Saccharomyces cerevisiae MLD10 Using Molasses. Appl Biochem Biotechnol 172, 2455–2464 (2014). https://doi.org/10.1007/s12010-013-0689-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0689-x

Keywords

  • Ethanol
  • Invertase
  • Industrial scale
  • Molasses
  • Saccharomyces cerevisiae