Image Analysis Technique as a Tool to Identify Morphological Changes in Trametes versicolor Pellets According to Exopolysaccharide or Laccase Production

Abstract

Image analysis technique was applied to identify morphological changes of pellets from white-rot fungus Trametes versicolor on agitated submerged cultures during the production of exopolysaccharide (EPS) or ligninolytic enzymes. Batch tests with four different experimental conditions were carried out. Two different culture media were used, namely yeast medium or Trametes defined medium and the addition of lignolytic inducers as xylidine or pulp and paper industrial effluent were evaluated. Laccase activity, EPS production, and final biomass contents were determined for batch assays and the pellets morphology was assessed by image analysis techniques. The obtained data allowed establishing the choice of the metabolic pathways according to the experimental conditions, either for laccase enzymatic production in the Trametes defined medium, or for EPS production in the rich Yeast Medium experiments. Furthermore, the image processing and analysis methodology allowed for a better comprehension of the physiological phenomena with respect to the corresponding pellets morphological stages.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Grimm, L. H., Kelly, S., Krull, R., & Hempel, D. C. (2005). Applied Microbiology and Biotechnology, 69, 375–384.

    CAS  Article  Google Scholar 

  2. 2.

    Harris, D. M., van der Krogt, Z. A., van Gulik, W. M., van Dijken, J. P., & Pronk, J. T. (2007). Applied and Environmental Microbiology, 73, 5020–5502.

    CAS  Article  Google Scholar 

  3. 3.

    Samanidou, V. F., Evaggelopoulou, E. N., & Papadoyannis, I. N. (2006). Journal of Separation Science, 29, 1879–1908.

    CAS  Article  Google Scholar 

  4. 4.

    Liers, C., Ullrich, R., & Pecyna, M. (2007). Enzyme and Microbial Technology, 41, 785–793.

    CAS  Article  Google Scholar 

  5. 5.

    Manubens, A., Canessa, P., & Folch, C. (2007). FEMS Microbiology Letters, 275, 139–145.

    Article  Google Scholar 

  6. 6.

    Tavares, A. P. M., Coelho, M. A. Z., Coutinho, J. A. P., & Xavier, A. M. R. B. (2005). Journal of Chemical Technology and Biotechnology, 80, 669–676.

    Article  Google Scholar 

  7. 7.

    Schmidt, M., Babu, K. R., Khanna, N., Marten, S., & Rinas, U. (1999). Journal of Biotechnology, 68, 71–83.

    CAS  Article  Google Scholar 

  8. 8.

    Papagianni, M. (2004). Biotechnology Advances, 22, 189–259.

    CAS  Article  Google Scholar 

  9. 9.

    Wosten, H. A. B., Moukha, S. M., Sietsma, J. H., & Wessels, J. G. H. (1991). Journal of General Microbiology, 137, 2017–2023.

    CAS  Article  Google Scholar 

  10. 10.

    Agger, T., Spohr, A. B., Carlsen, M., & Nielsen, J. (1998). Biotechnology and Bioengineering, 57, 321–329.

    CAS  Article  Google Scholar 

  11. 11.

    Znidarsic, P., & Pavko, A. (2001). Food Technology and Biotechnology, 39, 237–252.

    Google Scholar 

  12. 12.

    Lecault, V., Patel, N., & Thibault, J. (2007). Biotechnology Progress, 23, 734–740.

    CAS  Article  Google Scholar 

  13. 13.

    Yang, H., Reichl, U., King, R., & Gilles, E. D. (1992). Biotechnology and Bioengineering, 39, 44–48.

    CAS  Article  Google Scholar 

  14. 14.

    Yang, H., King, R., Reichl, U., & Gilles, E. D. (1992). Biotechnology and Bioengineering, 39, 49–58.

    CAS  Article  Google Scholar 

  15. 15.

    Pointing, S. B. (2001). Applied Microbiology and Biotechnology, 57, 20–33.

    CAS  Article  Google Scholar 

  16. 16.

    Saraiva, J. A., Tavares, A. P. M., & Xavier, A. M. R. B. (2012). Applied Biochemistry and Biotechnology, 167, 685–693.

    CAS  Article  Google Scholar 

  17. 17.

    Gamelas, J. A. F., Tavares, A. P. M., Evtuguin, D. V., & Xavier, A. M. R. B. (2005). Journal of Molecular Catalysis B: Enzymatic, 33, 57–64.

    CAS  Article  Google Scholar 

  18. 18.

    Tavares, A. P. M., Gamelas, J. A. F., Gaspar, A., Evtuguin, D. V., & Xavier, A. M. R. B. (2004). Catalysis Communications, 5, 485–489.

    CAS  Article  Google Scholar 

  19. 19.

    Xavier, A. M. R. B., Tavares, A. P. M., Agapito, M. S. M., & Evtuguin, D. V. (2008). Journal of Chemical Technology and Biotechnology, 83, 1602–1608.

    CAS  Article  Google Scholar 

  20. 20.

    Castro, A. I. R. P., Evtuguin, D. V., & Xavier, A. M. R. B. (2003). Journal of Molecular Catalysis B: Enzymatic, 22, 13–20.

    CAS  Article  Google Scholar 

  21. 21.

    Wong, D. (2009). Applied Biochemistry and Biotechnology, 157, 174–209.

    CAS  Article  Google Scholar 

  22. 22.

    Miyazaki, T., Yadomae, T., Sgiura, M., Ito, H., Fujii, K., Naruse, S., & Kunihisa, M. (1974). Chemical and Pharmaceutical Bulletin, 22, 1739–1742.

    CAS  Article  Google Scholar 

  23. 23.

    Carlile, M. J., & Watkinson, S. C. (1994). The fungi. London: Academic.

    Google Scholar 

  24. 24.

    Tien, M., & Kirk, T. K. (1988). Methods Enzyme, 161, 238–247.

    CAS  Article  Google Scholar 

  25. 25.

    Kim, S. W., Hwang, H. J., Park, J. P., Cho, Y. J., Song, C. H. C. H., & Yun, J. W. (2002). Letters in Applied Microbiology, 34, 56–61.

    CAS  Article  Google Scholar 

  26. 26.

    Roy, B., & Archibald, F. (1993). Applied and Environmental Microbiology, 59, 1855–1863.

    CAS  Google Scholar 

  27. 27.

    Tavares, A. P. M., Coelho, M. A. Z., Agapito, M. S. M., Coutinho, J. A. P., & Xavier, A. M. R. B. (2006). Applied Biochemistry and Biotechnology, 134, 233–248.

    CAS  Article  Google Scholar 

  28. 28.

    Tavares, A. P. M., Agapito, M. S. M., Coelho, M. A. Z., Silva, J. A. L., Barros-Timmons, A., Coutinho, J. A. P., & Xavier, A. M. R. B. (2005). World Journal of Microbiology and Biotechnology, 21, 1499–1507.

    CAS  Article  Google Scholar 

  29. 29.

    Ander, P., & Messner, K. (1998). Biotechnology Techniques, 12, 191–195.

    CAS  Article  Google Scholar 

  30. 30.

    Russ, C. R. (1995). The image processing handbook. Boca Raton, FL: CRC.

    Google Scholar 

  31. 31.

    Sugiura, M., Ohno, H., Kunihisa, M., Hirata, F., & Ito, H. (1980). Journal of Japanese History of Pharmacy, 30, 503–513.

    CAS  Article  Google Scholar 

  32. 32.

    Ng, T. B. (1998). Journal of General Pharmacy, 30, 1–4.

    CAS  Google Scholar 

  33. 33.

    Couto, S. R., Gundín, M., Lorenzo, M., & Sanromán, M. A. (2002). Process Biochemistry, 38, 249–255.

    CAS  Article  Google Scholar 

  34. 34.

    Nanou, K., & Roukas, T. (2010). Applied Biochemistry and Biotechnology, 160, 2415–2423.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Portucel—Empresa de Celulose e Papel, Cacia, Portugal, SA for the pulp and paper Kraft effluent used in this work. This work was funded by FEDER Funds through the Programa Operacional Factores de Competitividade—COMPETE, and national funds through FCT—Fundação para a Ciência e a Tecnologia under the projects PEst-C/CTM/LA/0011/2013 and PEst-C/EQB/LA0020/2013. A.P.M. Tavares acknowledge the financial support of (Programme Ciência 2008) FCT, Portugal.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana M. R. B. Xavier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tavares, A.P.M., Silva, R.P., Amaral, A.L. et al. Image Analysis Technique as a Tool to Identify Morphological Changes in Trametes versicolor Pellets According to Exopolysaccharide or Laccase Production. Appl Biochem Biotechnol 172, 2132–2142 (2014). https://doi.org/10.1007/s12010-013-0675-3

Download citation

Keywords

  • Filamentous fungi
  • Pellets morphology
  • Image analysis
  • Enzyme activity
  • Exopolysaccharide production
  • Pulp and paper effluent