Skip to main content
Log in

DNA Damage and Effects on Antioxidative Enzymes in Earthworm (Eisenia fetida) Induced by Flumorph

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Flumorph is an Oomycete fungicide, which is used extensively as an effective fungicide in vegetables and fruits, but little is known about its effect on nontarget soil organisms. In the present study, biochemical responses including changes in the activity of antioxidative enzymes catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), malondialdehyde (MDA), and DNA damage induced by flumorph were investigated in earthworms (Eisenis fetida). The CAT concentrations were stimulated at 5.0 mg kg−1 over 28 days and inhibited at 10 and 20 mg kg−1, except 10 mg kg−1 on days 21 and 28 compared with the controls. The overall SOD activities were inhibited except 5 mg kg−1 on day 28 and 10 mg kg−1 on days 7 and 14. Meanwhile, the GST activities were stimulated on day 7 and decreased on the other days in summary. The MDA activities were increased notably at 5, 10, and 20 mg kg−1 after 14 days. Clear dose-dependent DNA damage to Eisenia fetida was observed by olive tail moments in comet assay compared with controls. The results demonstrate that flumorph induces oxidative stress and DNA damage to earthworms, and the effects may be the important mechanisms of its toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song, Y., Zhu, L. S., Wang, J., Wang, J. H., Liu, W., & Xie, H. (2009). Soil Biology & Biochemistry, 41, 905–909.

    Article  CAS  Google Scholar 

  2. Fent, K., Weston, A. A., & Caminada, D. (2006). Aquatic Toxicology, 76, 122–159.

    Article  CAS  Google Scholar 

  3. OECD. (1984). OECD guidelines for testing of chemicals. Paris: Organization for Economic Co-operation and Development.

    Google Scholar 

  4. Stürzenbaum, S. R., Kille, P., & Morgan, A. J. (1998). Applied Soil Ecology, 9, 9495–9500.

    Article  Google Scholar 

  5. Hu, J. Y., Zhang, Y. C., & Yan, H. (2008). Journal of AOAC International, 91, 1459–1466.

    CAS  Google Scholar 

  6. Zhu, S. S., Liu, X. L., & Liu, P. F. (2007). Phytopathology, 97, 643–649.

    Article  CAS  Google Scholar 

  7. Wang, Y., Fan, S., Cui, X., He, M., Zhang, F., Yang, C., et al. (2011). Talanta, 86, 221–226.

    Article  CAS  Google Scholar 

  8. Hu, J. Y., Liu, C., & Yan, H. (2008). Journal of Agricultural and Food Chemistry, 56, 8574–8579.

    Article  CAS  Google Scholar 

  9. Hu, J. Y., Liu, C., Zhang, X., Qin, D. M., & Liu, C. L. (2009). Journal of Agricultural and Food Chemistry, 57, 9629–9633.

    Article  CAS  Google Scholar 

  10. Zhao, J., Cai, L., Wang, J., Wu, Y., Yao, B., & Zhang, L. (2011). Experimental and Toxicologic Pathology, 63, 143–149.

    Article  CAS  Google Scholar 

  11. Sabatini, S. E., Juarez, A. B., Eppis, M. R., Bianchi, L., Luquet, C. M., & Rios De Molina, M. C. (2009). Ecotoxicology and Environmental Safety, 72, 1200–1206.

    Article  CAS  Google Scholar 

  12. Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). Experimental Cell Research, 175, 184–191.

    Article  CAS  Google Scholar 

  13. Li, Z. Z., Niu, W., Qiao, X. W., & Ma, L. P. (2007). Pesticide Biochemistry and Physiology, 89, 54–59.

    Article  Google Scholar 

  14. Lin, D., Zhou, Q., Xie, X., & Liu, Y. (2010). Chemosphere, 811, 328–1333.

    Google Scholar 

  15. OECD. (2004). Earthworm reproduction tests (Eisenia foetida/Eisenia andrei). Paris: Organization for Economic Co-operation and Development.

    Google Scholar 

  16. Giannopolitis, C. N., & Ries, S. K. (1977). Plant Physiology, 59, 309–314.

    Article  CAS  Google Scholar 

  17. Saint-Denis, M., Labrot, F., Narbonne, J. F., & Ribera, D. (1998). Archives of Environmental Contamination and Toxicology, 35, 602–614.

    Article  CAS  Google Scholar 

  18. Livingstone, D. R., Garcia-Martinez, P., Michel, X., Narbonne, J. F., O’Hara, S., Ribera, D., et al. (1990). Functional Ecology, 4, 415–424.

    Article  Google Scholar 

  19. Eyambe, G. S., Goven, A. J., Fitzpatrick, L. C., Venables, B. J., & Cooper, E. L. (1991). Laboratory Animals, 25, 61–67.

    Article  CAS  Google Scholar 

  20. Konca, K., Lankoff, A., Banasik, A., Lisowska, H., Kuszewski, T., Gozdz, S., et al. (2003). Mutation Research, 53, 415–420.

    Google Scholar 

  21. Livingstone, D. R. (1993). Journal of Chemical Technology and Biotechnology, 57, 195–211.

    Article  CAS  Google Scholar 

  22. Brown, P. J., Long, S. M., Spurgeon, D. J., Svendsen, C., & Hankard, P. K. (2004). Chemosphere, 57, 1675–1681.

    Article  CAS  Google Scholar 

  23. Wang, M. E., & Zhou, Q. X. (2006). Environmental Pollution, 144, 572–580.

    Article  CAS  Google Scholar 

  24. Wang, M., & Zhou, Q. (2006). Ecotoxicology and Environmental Safety, 64, 190–197.

    Article  CAS  Google Scholar 

  25. Lin, D., Xie, X., Zhou, Q., & Liu, Y. (2012). Environmental Toxicology, 27, 385–392.

    Article  CAS  Google Scholar 

  26. Liu, Y., Zhou, Q., Xie, X., Lin, D., & Dong, L. (2010). Ecotoxicology, 19, 1551–1559.

    Article  CAS  Google Scholar 

  27. Sun, Y., Yin, Y., Zhang, J., Yu, H., & Wang, X. (2007). Environmental Toxicology, 22, 256–263.

    Article  CAS  Google Scholar 

  28. Canesi, L., Ciacci, C., Lorusso, L. C., Betti, M., Gallo, G., Pojana, G., et al. (2007). Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 145, 464–472.

    Google Scholar 

  29. Lukkari, T., Taavitsainen, M., Soimasuo, M., Oikari, A., & Haimi, J. (2004). Environmental Pollution, 129, 377–386.

    Article  CAS  Google Scholar 

  30. Booth, L. H., Hodge, S., & O’Halloran, K. (2001). Bulletin of Environmental Contamination and Toxicology, 67, 633–640.

    Article  CAS  Google Scholar 

  31. Moss, T., Howes, D., & Williams, F. M. (2000). Food and Chemical Toxicology, 38, 361–370.

    Article  CAS  Google Scholar 

  32. Papadimitriou, E., & Loumbourdis, N. S. (2002). Bulletin of Environmental Contamination and Toxicology, 69, 885–891.

    Article  CAS  Google Scholar 

  33. Grundy, J. E., & Storey, K. B. (1998). Journal of Comparative Physiology B, 168, 132–142.

    Article  CAS  Google Scholar 

  34. Ostling, O., & Johanson, K. J. (1984). Biochemical and Biophysical Research Communications, 123, 291–298.

    Article  CAS  Google Scholar 

  35. Tice, R. R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., et al. (2000). Environmental and Molecular Mutagenesis, 35, 206–221.

    Article  CAS  Google Scholar 

  36. Dhawan, A., Bajpayee, M., & Parmar, D. (2009). Cell Biology and Toxicology, 25, 5–32.

    Article  CAS  Google Scholar 

  37. Binelli, A., Cogni, D., Parolini, M., Riva, C., & Provini, A. (2009). Aquatic Toxicology, 91, 238–244.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 31240005), Agriculture Research Program of Science and Technology Department of Liaoning Province, China (nos. 2011211001 and 2009209001), Program for Liaoning Excellent Talents in University (no. LJQ2013002), Startup Foundation for Doctors of Liaoning University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiujuan Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, X., Yang, C., Liu, J. et al. DNA Damage and Effects on Antioxidative Enzymes in Earthworm (Eisenia fetida) Induced by Flumorph. Appl Biochem Biotechnol 172, 2276–2285 (2014). https://doi.org/10.1007/s12010-013-0662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0662-8

Keywords

Navigation