Skip to main content

Advertisement

Log in

Enzymatic Trends of Fructooligosaccharides Production by Microorganisms

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fructooligosaccharides are influential prebiotics that affect various physiological functions in such a way that they promote positive impact to health. They occur naturally in many fruits and vegetables in trace amounts. However, they are mainly produced commercially by the reaction of microbial enzymes with di- or polysaccharides, such as sucrose or inulin as a substrate. For maximum production of fructooligosaccharides on an industrial level, development of more enzymes with high activity and stability is required. This has attracted the attention of biotechnologists and microbiologists worldwide. This study aims to discuss the new trends in the production of fructooligosaccharide and its effect on numerous health qualities through which it creates great demand in the sugar market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Trends in Food Science and Technology, 16, 442–457.

    CAS  Google Scholar 

  2. Ganaie, M. A., Gupta, U. S., & Kango, N. (2013). Journal of Molecular Catalysis B: Enzymatic, 97, 12–17.

    CAS  Google Scholar 

  3. Salinas, M. A., & Perotti, N. A. (2009). Journal of India Industrial Microbiology Biotechnology, 36, 39–43.

    CAS  Google Scholar 

  4. Crittenden, R. G., & Playne, M. J. (1996). Trends in Food Science and Technology, 7, 353–360.

    CAS  Google Scholar 

  5. Oku, T. (1994). Goldberg Ist ed (pp. 202–217). New York: Chapman and Hall.

    Google Scholar 

  6. Kaur, N., & Gupta, A. K. (2002). Journal of Biosciences, 27, 703–714.

    CAS  Google Scholar 

  7. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2003). Asian Journal of Microbiology Biotechnology Environmental Sciences, 5, 313–318.

    CAS  Google Scholar 

  8. Hidaka, H., Eida, T., Takizawa, T., & Toshira, Y. (1986). Bifidobacteria. Microflora, 5, 37–50.

    Google Scholar 

  9. Mabel, M. J., Sangeetha, P. T., Platel, K., Srinavasan, K., & Prapulla, S. G. (2008). Carbohydrate Research, 343, 56–66.

    CAS  Google Scholar 

  10. Soo, L. J., Park, S. W., Lee, J. W., Oh, K. K., & Kim, S. W. (2005). Journal of Microbiology and Biotechnology, 15, 1317–1322.

    Google Scholar 

  11. Gutierrez-Alonso, P. andez-Arrojo L.F. Plou, J.F. and andez-Lobato M.F. (2009) FEMS Yeast Research 11, 1–6

  12. Linde, D., Colinas, B. R., Estevez, M., Poveda, A., Plou, F. J., & Lobato, M. F. (2012). Bioresource Technology, 109, 123–130.

    CAS  Google Scholar 

  13. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Process Biochemistry, 39, 755–760.

    Google Scholar 

  14. Dominguez, E., Nilson, M., & Hahn-Hagerdal, B. (1988). Enzyme Microbial Technology, 10, 606–610.

    CAS  Google Scholar 

  15. Jung, K. H., Yun, J. W., Kang, K. R., Lim, J. Y., & Lee, J. H. (1989). Enzyme Microbial Technology, 11, 491–494.

    CAS  Google Scholar 

  16. Yun, J. W. (1996). Enzyme Microbial Technology, 19, 107–117.

    CAS  Google Scholar 

  17. Antosova, M., Illeova, V., Vandakova, M., Druzkovska, A., & Polakova, M. (2008). Journal of Biotechnology, 135, 58–63.

    CAS  Google Scholar 

  18. Fernandez, R. C., Ottoni, E. S., Silva, D. A., Matsubra, R. M. S., & Carter, J. M. (2007). Applied Microbiology Biotechnology, 75, 87–93.

    CAS  Google Scholar 

  19. Hidaka, H., Hirayama, M., & Sumi, S. A. (1988). Agricultural and Biological Chemistry, 52, 1187–1988.

    Google Scholar 

  20. Hayashi, S., Nonokuchi, M., Imada, K., & Ueno, H. (1990). Journal of Industrial Microbiology, 5, 395–400.

    CAS  Google Scholar 

  21. Lateef, A., Oloke, J. K., & Prapulla, S. G. (2007). Enzyme Microbial Technology, 40, 1067–1070.

    CAS  Google Scholar 

  22. Maugeri, F., & Hernalsteens, S. (2007). Journal of Molecular Catalysis B: Enzymatic, 49, 43–49.

    CAS  Google Scholar 

  23. El-Beih, F. M., Abdel-Fattah, A. M., Hasanein, D. A., Mostafa, F. A., & Abdel-Fatta, A. F. (2009). Journal of Applied Sciences Research, 5, 1132–1141.

    CAS  Google Scholar 

  24. Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2007). Journal of Bioscience and Bioengineering, 103, 491–493.

    CAS  Google Scholar 

  25. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Journal of Food Engineering, 68, 57–64.

    Google Scholar 

  26. Park, J. P., Bae, J. T., & Yun, J. W. (1999). Biotechnology Letters, 21, 987–990.

    CAS  Google Scholar 

  27. Chen, W. C., & Liu, C. H. (1996). Enzyme Microbial Technology, 18, 153–160.

    CAS  Google Scholar 

  28. Barthomeuf, C., & Pourrat, H. (1995). Biotechnology Letters, 17, 91l–916l.

    Google Scholar 

  29. Ganaie, M. A., Dehariya, K., & Gupta, U. S. (2013). Indo American Journal of Pharm Research, 3, 4138–4148.

    Google Scholar 

  30. Yang, F. C., & Liau, C. B. (1998). Process Biochemistry, 33, 547–553.

    CAS  Google Scholar 

  31. Yang, B. K., Ha, J. Y., Jeong, S. C., Das, S., Yun, J. W., Lee, Y. S., Choi, J. W., & Song, C. H. (2000). Journal of Microbiology and Biotechnology, 10, 784–788.

    CAS  Google Scholar 

  32. Papagianni, M. (2007). Biotechnology Advance, 25, 244–263.

    CAS  Google Scholar 

  33. Dhake, A. B., & Patil, M. B. (2007). Brazilian Journal of Microbiology, 38, 194–199.

    Google Scholar 

  34. Sheu, D. C., Lio, P. J., Chen, S. T., Lin, C. T., & Duan, K. J. (2001). Biotechnology Letters, 23, 1499–1503.

    CAS  Google Scholar 

  35. Lateef, A., Oloke, J. K., Guegium Kana, E. B., Oyeniyi, S. O., Onifade, O. R., Oyeleye, A. O., Oladosu, O. C., & Oyelami, A. O. (2008). World Journal Microbiology Biotechnology, 24, 2369–2374.

    CAS  Google Scholar 

  36. Maiorano, A., da Piccoli, R., Silva, E., & Rodrigues, M. F. A. (2008). Biotechnology Letters, 30, 1867–1877.

    Google Scholar 

  37. Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Applied Microbiology Biotechnology, 65, 530–537.

    CAS  Google Scholar 

  38. Mussatto, S. I., Ballesteros, L. F., Martins, S., Maltos, D. A. F., Aguilar, C. N., & Teixeira, J. A. (2012). Food Bioprocess Technology. doi:10.1007/s11947-012-0873-y.

    Google Scholar 

  39. Lateef, A., Oloke, J. K., Gueguim-Kana, E. B., & Raimi, O. R. (2012). Acta Aliments, 41, 100–117.

    CAS  Google Scholar 

  40. Lateef, A., & Gueguim Kana, E. B. (2012). Romanian Biotechnology Letters, 17, 7309–7316.

    CAS  Google Scholar 

  41. Pandey, A., Soccol, C. R., Selvakumar, P., Soccol, V. T., Krieger, N., & Fontana, J. D. (1999). Applied Biochemistry and Biotechnology, 81, 35–52.

    CAS  Google Scholar 

  42. Cho, Y. J., & Yun, J. W. (2002). Process Biochemistry, 37, 1325–1331.

    CAS  Google Scholar 

  43. Chi, Z., Zhang, T., Liu, G., & Xue, L. (2009). Applied Microbiology and Biotechnology, 82, 211–220.

    CAS  Google Scholar 

  44. Ricca, E., Calabro, V., Curcio, S., & Iorio, G. (2009). Process Biochemistry, 44, 466–470.

    CAS  Google Scholar 

  45. Derycke, D. J., & Vandamme, E. J. (1984). Journal of Chemical Technology and Biotechnology, 34, 45–51.

    CAS  Google Scholar 

  46. Onodera, S., & Shiomi, N. (1988). Agricultural and Biological Chemistry, 52, 2569–2576.

    CAS  Google Scholar 

  47. Singh, R. S., Dhaliwal, R., & Puri, M. (2006). Process Biochemistry, 41, 1703–1707.

    CAS  Google Scholar 

  48. Zherebtsovn, N. A., Abramova, I. N., Shelamova, S. A., & Popova, T. N. (2003). Applied Biochemistry and Microbiology, 39, 544–548.

    Google Scholar 

  49. Yun, J. W., Kim, D. H., Kim, B. W., & Song, S. K. (1999). Journal of Fermentation and Bioengineering, 84, 369–371.

    Google Scholar 

  50. Takahashi, N., Mizuno, F., & Takamori, K. (1985). Infection and Immunity, 47, 271–276.

    CAS  Google Scholar 

  51. Singh, R. S., & Singh, R. P. (2010). Food Technology Biotechnology, 48, 435–450.

    CAS  Google Scholar 

  52. Georgescu, L.A. and Stoica, I. (2005) The Annals of the University Dunarea de Jos of Galati – No.1.

  53. Yun, J. W., Park, J. P., Song, C. H., Lee, C. Y., Kim, J. H., & Song, S. K. (2000). Bioprocess Engineering, 22, 189–194.

    CAS  Google Scholar 

  54. Santos, M. P., & Maugeri, F. (2007). Food Technology Biotechnology, 45, 181–186.

    CAS  Google Scholar 

  55. Park, Y. K., & Almeida, M. M. (1991). World Journal Microbiology and Biotechnology, 7, 331–334.

    CAS  Google Scholar 

  56. Hernalsteens, S., & Maugeri, F. (2010). Journal of Food Biochemistry, 34, 520–534.

    CAS  Google Scholar 

  57. Lateef, A., Oloke, J. K., & Prapulla, S. G. (2007). Turkish Journal of Biology, 31, 147–154.

    CAS  Google Scholar 

  58. Song, D. D., & Jacques, N. A. (1999). Biochemical Journal, 341, 285–291.

    CAS  Google Scholar 

  59. Michielse, C. B., Ram, A. F. J., Van, D., & Hondel, C. A. M. J. (2004). Current Genetics, 45, 399–403.

    CAS  Google Scholar 

  60. Archer, D. B., & Dyer, P. S. (2004). Current Opinion in Microbiology, 7, 499–504.

    CAS  Google Scholar 

  61. Liebl, W., Brem, D., & Gotschlich, A. (1998). Applied Microbiology and Biotechnology, 50, 55–64.

    CAS  Google Scholar 

  62. Gallagher, J., Cairns, A., & Pollock, C. (2004). Journal of Experimental Botany, 55, 557–569.

    CAS  Google Scholar 

  63. Kawakami, A., & Yoshida, M. (2002). Bioscience, Biotechnology, and Biochemistry, 66, 2297–2305.

    CAS  Google Scholar 

  64. Olivares-Illana, V., Lopez-Munguıa, A., & Olvera, C. (2003). Journal of Bacteriology, 185, 3606–3612.

    CAS  Google Scholar 

  65. Rodriguez, M. A., Sanchez, O. F., & Almeciga-Diaz, C. J. (2011). Molecular Biology Reports, 38, 1151–1161.

    CAS  Google Scholar 

  66. Heyer, A. G., & Wendenburg, R. (2001). Applied and Environmental Microbiology, 67, 363–370.

    CAS  Google Scholar 

  67. Trujillo, L. E., Arrieta, J. G., Dafhnis, F., Garcia, J., Valdes, Y., Tambara, M., Perez, L., & Hernandez, L. (2001). Enzyme and Microbial Technology, 28, 139–144.

    CAS  Google Scholar 

  68. Seibel, J., Moraru, R., Gotze, S., Buchholz, K., Naamnieh, S., Pawlowski, A., & Hccht, H. J. (2006). Carbohydrate Research, 341, 2335–2349.

    CAS  Google Scholar 

  69. Machida, M., Asai, K., Sano, M., & Tanaka, T. (2005). Nature, 438, 1157–1161.

    Google Scholar 

  70. Ajdie, D., McShan, W. M., McLaughlin, R. E., Savi, G., Chang, J., Carson, M. B., Primeaux, C., Tian, R., Kenton, S., Jia, H., Lin, S., Qian, Y., Li, S., Zhu, H., Najar, F., Lai, H., White, J., Roe, B. A., & Ferretti, J. J. (2002). Proceedings of the National Academy Sciences of the United States of America, 99, 14435–14439.

    Google Scholar 

  71. Kurakake, M., Ogawa, K., Sugie, M., Takemura, A., Sugiura, K., & Komaki, T. (2008). Journal of Agricultural and Food Chemistry, 56, 591–596.

    CAS  Google Scholar 

  72. Zaborsky, O. R. (1973). Immobilized Enzymes. Cleveland: CRC Press.

    Google Scholar 

  73. Carvalho, W., Silva, S. S., Converti, A., & Vitolo, M. (2002). Biotechnology and Bioengineering, 79, 165–169.

    CAS  Google Scholar 

  74. Cheetham, P. S. J., Garrett, C., & Clark, J. (1985). Biotechnology and Bioengineering, 27, 471–481.

    CAS  Google Scholar 

  75. Chibata, I., & Tosa, T. (1980). Trends in Biochemistry Sciences, 5, 88–90.

    CAS  Google Scholar 

  76. Ganaie, M. A., Pathak, L. K., & Gupta, U. S. (2011). Journal of Food Technology, 9, 91–94.

    CAS  Google Scholar 

  77. Mussattoa, S. I., Aguilarb, C. N., Rodriguesa, L. R., & Teixeiraa, J. A. (2009). Journal of Molecular Catalysis B: Enzymatic, 59, 76–81.

    Google Scholar 

  78. Champagne, C. P., Blahuta, N., Brion, F., & Gagnon, C. (2002). Biotechnology and Bioengineering, 68, 681–688.

    Google Scholar 

  79. Shin, H. T., Park, K. M., Kang, K. H., Oh, D. J., Lee, S. W., Baig, S. Y., & Lee, J. H. (2004). Letters in Applied Microbiology, 38, 176–179.

    CAS  Google Scholar 

  80. Jung, K. H., Bang, S. H., Oh, T. K., & Park, H. J. (2011). Biotechnology Letters, 33, 1621–1624.

    CAS  Google Scholar 

  81. Ganaie, M.A. Rawat, H.K. Wani, O.A. Gupta, U.S. Kango, N. (2013) Process Biochem. Article in press

  82. Yun, J. W., & Song, S. K. (1996). Biotechnology and Bioprocess Engineering, 1, 18–21.

    Google Scholar 

  83. Xu, Z. W., Li, Y. Q., Wang, Y. H., Yang, B., & Ning, Z. X. (2009). Food Technology Biotechnology, 47, 137–143.

    CAS  Google Scholar 

  84. Win, T. T., Isono, N., Kusnadi, Y., Watanabe, K., Obae, K., Ito, H., & Matsui, H. (2004). Biotechnology Letters, 26, 499–503.

    CAS  Google Scholar 

  85. Ghazi, I., Fernandez-Arroja, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Journal of Biotechnology, 128, 204–211.

    CAS  Google Scholar 

  86. Markosyan, A. A., Adamyan, M. O., Ekazhev, Z. D., Akopyan, Z. I., & Abelyan, V. A. (2007). Applied Biochemistry Microbiology, 43, 383–389.

    CAS  Google Scholar 

  87. Nishizawa, K., Nakajima, M., & Nabetani, H. (2001). Food Science and Technology Research, 7, 39–4.

    CAS  Google Scholar 

  88. Sanchez, O.F. Rodriguez, A.M. Silva, E. and Caicedo, L.A. (2008) Food Bioprocess Technol. DOI 10. 1007/s 11947 008 0121

  89. Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2008). Biotechnology Letters, 30, 535–539.

    CAS  Google Scholar 

  90. Yun, J. W., & Song, S. K. (1996). Biotechnology Bioprocess Engineering, 1, 18–21.

    Google Scholar 

  91. Mandlova, A., Antosova, M., Barathova, M., Polakovic, M., Stefuca, V., & Bales, V. (1999). Chemical Papers, 53, 366–369.

    Google Scholar 

  92. Yun, J. W., Kim, D. H., Kim, B. W., & Song, S. K. (1999). Biotechnology Letters, 21, 987–990.

    Google Scholar 

  93. Park, J. P., Oh, T. K., & Yun, J. W. (2001). Process Biochemistry, 37, 471–476.

    Google Scholar 

  94. Babu, I. S., Ramappa, S., Mahesh, D. G., Kumari, K. S., Kumari, K. S., & Ranigaiah, G. S. (2008). Research Journal of Microbiology, 3, 114–121.

    CAS  Google Scholar 

  95. Hayashi, S., Yoshiyama, T., & Shinohara, S. (2000). Biotechnology Letters, 22, 1465–1469.

    CAS  Google Scholar 

  96. Lim, J. S., Park, M. C., Lee, J. H., Park, S. W., & Kim, S. W. (2005). European Food Research and Technology, 221, 639–644.

    CAS  Google Scholar 

  97. Prata, M. B., Mussatto, S. I., Rodrigues, L. R., & Teixeira, J. A. (2010). Biotechnology Letters, 32, 837–840.

    CAS  Google Scholar 

  98. Bealing, F. J., & Bacon, J. S. D. (1953). The Biochemical Journal, 53, 277–285.

    CAS  Google Scholar 

  99. Lateef, A., Oloke, J. K., Gueguim-Kana, E. B., Oyeniyi, S. O., Onifade, R. O., Oyeleye, A. O., & Olabiyi, C. O. (2008). Chemical papers, 62, 635–638.

    CAS  Google Scholar 

  100. Hernalsteens, S., & Maugeri, F. (2008). European Food Research and Technology, 28, 213–221.

    Google Scholar 

  101. Straathof, A. J. J., Kieboom, A. P. G., & Van Bekkum, H. (1986). Carbohydrate Research, 146, 154–159.

    CAS  Google Scholar 

  102. Takeda, H., Kinoshita, S. S. K., & Sasaki, H. (1994). Journal of Fermentation and Bioengineering, 77, 386–389.

    CAS  Google Scholar 

  103. Katapodis, P., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2004). Applications of Microbiology Biotechnology, 63, 378–382.

    CAS  Google Scholar 

  104. Ning, Y., Wang, J., Chen, J., Yang, N., Jin, Z., & Xu, X. (2010). Bioresearch Technology, 101, 7472–7478.

    CAS  Google Scholar 

  105. Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., Pankova, L., & Danilevics. (2002). Process Biochemistry, 38, 701–706.

    CAS  Google Scholar 

  106. Lee, K. J., Choi, J. D., & Lim, J. Y. (1992). World Journal Microbiology Biotechnology, 8, 411–415.

    CAS  Google Scholar 

  107. Hocine, L. L., Wang, Z., Jaing, B., & Xu, S. (2000). Journal of Biotechnology, 81, 73–84.

    Google Scholar 

  108. Alonso, P. G. Arrojo, L. F. Plou, F. J. Lobato, and M. F. (2009) FEMS Yeast Res. 1-6.

Download references

Acknowledgments

The lead author MAG is greatly thankful to the Department of Zoology, Dr. Harisingh Gour University, Sagar (MP) India for carrying out research work and also to UGC for providing SRF UGC BSR meritorious fellowship for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Anis Ganaie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganaie, M.A., Lateef, A. & Gupta, U.S. Enzymatic Trends of Fructooligosaccharides Production by Microorganisms. Appl Biochem Biotechnol 172, 2143–2159 (2014). https://doi.org/10.1007/s12010-013-0661-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0661-9

Keywords

Navigation