Skip to main content

Advertisement

Log in

A Review on Optimization Production and Upgrading Biogas Through CO2 Removal Using Various Techniques

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schlütera, A., Bekel, T., Naryttza, N. D., Michael, D., Rudolf, E., Gartemannc, K. H., Irene, K., Lutz, K., Holger, K., Olaf, K., Mussgnugd, J. H., Heiko, N., Karsten, N., Alfred, P., Kai, J. R., Rafael, S., Andreas, T., Alexandra, T., Prisca, V., & Alexander, G. (2008). The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the454-pyrosequencing technology. Journal of Biotechnology, 136, 77–90.

    Article  Google Scholar 

  2. Angelidaki, I., & Ellegaard, L. (2003). Codigestion of manure and organic wastes in centralized biogas plants: status and future trends. Applied Biochemistry and Biotechnology, 109, 95–105.

    Article  CAS  Google Scholar 

  3. Yadvika, S., Sreekrishnan, T. R., Kohli, S., & Rana, V. (2004). Enhancement of biogasproduction from solid substrates using different techniques—a review. Bioresource Technology, 95, 1–10.

    Article  CAS  Google Scholar 

  4. Chandra, R., Tekeuchi, H., Hasegawa, T., & Kumar, R. (2012). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43, 273–282.

    Article  CAS  Google Scholar 

  5. Ryckebosch, E., Drouillon, M., & Vervaeren, H. (2011). Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35, 1633–1645.

    Article  CAS  Google Scholar 

  6. Wellinger, A., & Lindberg, A. (2002). Biogas upgrading and utilisation. IEA Bioenergy Task 24: Energy From BiologicalConversion of Organic Waste. http://www.biogasmax.eu/media/biogas_upgrading_and_utilisation__018031200_1011_24042007.pdf. Accessed 8 March 2013.

  7. Wheless, E., & Pierce, J. (2004). Siloxanes in landfill and digester gasupdate. Whittier (Canada) and Long Beach (California): Los Angeles Country Sanitation Districts andSCS Energy. http://www.scsengineers.com/Papers/Pierce_2004Siloxanes_Update_Paper.pdf. Accessed 8 March 2013.

  8. Jeihanipour, A., Aslanzadeh, S., Rajendran, K., Balasubramanian, G., & Taherzadeh, M. J. (2013). High-rate biogas production from waste textiles using two-stage process. Renewable Energy, 52, 128–135.

    Article  CAS  Google Scholar 

  9. Weiland, P. (2010). Biogas production: current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860.

    Article  CAS  Google Scholar 

  10. Petersson, A., & Wellinger, A. (2009). Biogas upgrading technologies—developments and innovations. IEA Bioenergy.

  11. Marañón, E., Castrillón, L., Quiroga, G., Fernández-Nava, Y., Gómez, L., & García, M. M. (2012). Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Management, 32, 1821–1825.

    Article  Google Scholar 

  12. Amon, T., Amon, B., Kryvoruchko, V., Bodiroza, V., Pötsch, E., & Zollitsch, W. (2006). Optimising methane yield from anaerobic digestion of manure: effects of dairy systems and of glycerin supplementation. International Congress Series, 1293, 217–220.

    Article  CAS  Google Scholar 

  13. Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., & Longworth, J. (2008). Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 99(17), 8288–8293.

    Article  CAS  Google Scholar 

  14. Boe, K., Karakashev, D., Trably, E., & Angelidaki, I. (2009). Effect of post-digestion temperature on serial CSTR biogas reactor performance. Water research, 43, 669–676.

    Article  CAS  Google Scholar 

  15. Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewableresources. An introduction. Wienheim: Wiley.

    Book  Google Scholar 

  16. Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M. J., & Sarvari, H. I. (2010). Pretreatment of paper tube residuals for improved biogas production. BioresourTechnol, 101, 1206.

    Article  CAS  Google Scholar 

  17. Hjorth, M., Christensen, K. V., Christensen, M. L., & Sommer, S. G. (2010). Solid–liquid separation of animal slurry in theory and practice. a review. Agron. Sustain. Dev, 3, 153–180.

    Article  Google Scholar 

  18. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  19. Davidsson, Å. (2007). Increase of biogas production at wastewater treatment plants. Ph.D. thesis, Lund University, Lund, Sweden

  20. Angelidaki, I., & Ahring, B. K. (2000). Methods for increasing the biogas potential from the recalcitrant organic matter contained in manure. Water Science and Technology, 41, 189–194.

    CAS  Google Scholar 

  21. Bougrier, C., Delgenès, J. P., & Carrere, H. (2006). Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield. Process Safety and Environment Protection, 84, 280–284.

    Article  CAS  Google Scholar 

  22. Lin, J. G., Chang, C. N., & Chang, S. C. (1997). Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization. Bioresource Technology, 62, 85–90.

    Article  CAS  Google Scholar 

  23. Bougrier, C., Battimelli, A., Delgenès, J. P., & Carrere, H. (2007). Combined ozone pretreatment and anaerobic digestion for the reduction of biological sludge production in wastewater treatment. Ozone Science and Engineering, 29, 201–206.

    Article  CAS  Google Scholar 

  24. Xie, R., Xing, Y., Ghani, Y. A., Ooi, K. E., & Ng, S. W. (2007). Full-scale demonstration of an ultrasonic disintegration technology in enhancing anaerobic digestion of mixed primary and thickened secondary sewage sludge. Journal of Environmental Engineering and Science, 6, 533–541.

    Article  CAS  Google Scholar 

  25. Zeng, X., Ma, Y., & Ma, L. (2007). Utilization of straw in biomass energy in China. Renewable and Sustainable Energy Reviews, 11(5), 976–987.

    Article  CAS  Google Scholar 

  26. Willey, J. M., Sherwood, L. M., & Woolverton, C. S. (2009). Prescott’s Principles of Microbiology. New York: McGraw-Hill.

    Google Scholar 

  27. Drake, H. L., Kuse, l. K., & Matthies, C. (2002). Ecological consequences of the phylogenetic and physiological diversities of acetogens. Antonie Van Leeuwenhoek, 81, 203–213.

    Article  CAS  Google Scholar 

  28. Myint, M., Nirmalakhandan, N., & Speece, R. E. (2007). Anaerobic fermentation of cattle manure: modeling of hydrolysis and acidogenesis. Water Research, 41, 323–332.

    Article  CAS  Google Scholar 

  29. Deppenmeier, U., Muller, V., & Gottschalk, G. (1996). Pathways of energy conservation in methanogenicarchaea. Archives of Microbiology, 165, 149–163.

    Article  CAS  Google Scholar 

  30. Hofman-Bang, J., Zheng, D., Westermann, P., Ahring, B. K., & Raskin, L. (2003). Molecular ecology of anaerobic reactor systems. Advances in Biochemical Engineering/Biotechnology, 81, 151–203.

    Article  CAS  Google Scholar 

  31. Nettmann, E., Bergmann, I., Mundt, K., Linke, B., & Klocke, M. (2008). Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. Journal of Applied Microbiology, 105(6), 1835–1850.

    Article  CAS  Google Scholar 

  32. Ács, N., Bagi, Z., Rakhely, G., Kovács, E., Wirth, R., & Kovács, K. L. (2011). Improvement of biogas production by biotechnological manipulation of the microbial population (3rd IEEE International Symposium on Exploitation of Renewable Energy Sources). Serbia: Subotica.

    Google Scholar 

  33. Bagi, Z., Ács, N., Bálint, B., Horvárth, L., Dobó, K., Perei, K. R., Rakhely, G., & Kovács, K. L. (2007). Biotechnological intensification of biogas production. Applied Microbiology and Biotechnology, 76, 473–482.

    Article  CAS  Google Scholar 

  34. Ács, N. (2010). Monitoring the biogas producing microbes. Act BiologicaSzegediensis, 54(1), 59–73.

    Google Scholar 

  35. Klocke, M., Máhnert, P., Mundt, K., Souidi, K., & Linke, B. (2007). Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Systematic and Applied Microbiology, 30, 139–151.

    Article  CAS  Google Scholar 

  36. Chachkhiani, M., Dabert, P., Abzianidze, T., Partskhaladze, G., Tsiklauri, L., Dudauri, T., & Godon, J. J. (2004). 16S rDNAcharacterisation of bacterial and archaeal communities during start-up of anaerobic thermophilic digestion of cattle manure. Bioresource Technology, 93, 227–232.

    Article  CAS  Google Scholar 

  37. Kaparaju, P., Ellegaard, L., & Angelidaki, I. (2009). Optimization of biogas production from manure through serial digestion: lab-scale and pilot-scale studies. Bioresource Technology, 100, 701–709.

    Article  CAS  Google Scholar 

  38. Wilkie, A. C., Castro, H. F., Cubisnki, K. R., Owens, J. M., & Yan, S. C. (2004). Fixed-film anaerobic digestion of flushed dairy manure after primary treatment: wastewater production and characterisation. Biosystems Eng., 89(4), 457–471.

    Article  Google Scholar 

  39. Speece, R. E., Duran, M., Demirer, G., Zhang, H., & DiStefano, T. (1997). The role of process configuration in the performance of anaerobic systems. Water Science Technology, 36, 539–547.

    Article  CAS  Google Scholar 

  40. Boe, K., & Angelidaki, I. (2009). Serial CSTR digester configuration for improving biogas production from manure. Water research, 43(1), 166–172.

    Article  CAS  Google Scholar 

  41. Smith, D. P., & McCarty, P. L. (1989). Reduced product formation following perturbation of ethanol- and propionate-fed methanogenic CSTRs. Biotechnology and Bioengineering, 34(7), 885–895.

    Article  CAS  Google Scholar 

  42. Boe, K. (2006). Online monitoring and control of the biogas process, Ph.D. Thesis, Technical University of Denmark.

  43. Boe, K., & Batstone, D. J. (2005). Optimisation of serial CSTR biogas reactors using modeling by ADM1. In: Proceedings of the First International Workshop on the IWA Anaerobic Digestion Model No. 1 (ADM1), 2–4 September 2005, Lyngby, Denmark: 219–221.

  44. Ge, H. Q., Jensen, P. D., & Batstone, D. J. (2011). Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge. Journal of Hazardous Materials, 187, 355–361.

    Article  CAS  Google Scholar 

  45. Callaghan, F. J., Wase, D. A. J., Thayanithy, K., & Foster, C. F. (1999). Co-digestion of waste organic solids: batch studies. Bioresource Technology, 67, 117–122.

    Article  CAS  Google Scholar 

  46. Agdag, O. N., & Sponza, D. T. (2007). Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. Journal of Hazardous Materials, 140, 75–85.

    Article  CAS  Google Scholar 

  47. Mshandete, A., Kivaisi, A., Rubindamayugi, M., & Mattiasson, B. (2004). Anaerobic batch co-digestion of sisal pulp and fish wastes. Bioresource Technology, 95(1), 19–24.

    Article  CAS  Google Scholar 

  48. Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes: an overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16.

    Article  CAS  Google Scholar 

  49. Astals, S., Ariso, M., Galí, A., & Mata-Alvarez, J. (2011). Co-digestion of pig manure and glycerine: experimental and modelling study. Journal of Environmental Management, 92(4), 1091–1096.

    Article  CAS  Google Scholar 

  50. Fountoulakis, M. S., & Manios, T. (2009). Enhanced methane and hydrogen production from municipal solid waste and agro-industrial by-products co-digested with crude glycerol. Bioresource Technology, 100, 3043–3047.

    Article  CAS  Google Scholar 

  51. Misi, S. N., & Forster, C. F. (2001). Batch co-digestion of multi-component agro-wastes. Bioresource Technology, 80(1), 19–28.

    Article  CAS  Google Scholar 

  52. Xiao, L., Xingbao, G., Wei, W., Lei, Z., Yingjun, Z., & Yifei, S. (2012). Pilot-scale anaerobic co-digestion of municipal biomass waste: focusing on biogas production and GHG reduction. Renewable energy, 44, 463–468.

    Article  Google Scholar 

  53. Hamed, M. M., & Ruihong, Z. (2010). Biogas production from co-digestion of diary manure and food waste. Bioresource Technology, 101, 4021–4028.

    Article  Google Scholar 

  54. Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., & Gamble, P. (2006). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929–935.

    Article  Google Scholar 

  55. Sosnowski, P., Wieczorek, A., & Ledakowicz, S. (2003). Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Advances in Environmental Research, 7, 609–616.

    Article  CAS  Google Scholar 

  56. Capela, I., Rodrigues, A., Silva, F., Nadais, H., & Arroja, L. (2008). Impact of industrial sludge and cattle manure on anaerobic digestion of the OFMSW under mesophilic conditions. Biomass and Bioenergy, 32, 245–251.

    Article  CAS  Google Scholar 

  57. Ritchie, D. A., Edwards, C., Mc Donald, I. R., & Murrell, J. C. (1997). Detection of metanogen and metanotrophs in natural environment. Global Change Biology, 3, 339–350.

    Article  Google Scholar 

  58. Ward, A. J. (2010). Biogas potential of fish wax with cattle manure. Internal Report-Animal Science: Department of Biosystems Engineering, Fakulty of Agricultural Sciences, University of Aarhus.

    Google Scholar 

  59. Tortora, G. J., Funke, B. R., & Case, C. L. (2010). Microbiology, an introduction (10th ed.). Redwood City: Benjamin Cummings.

    Google Scholar 

  60. Ahring, B. K. (2003). Perspectives for anaerobic digestion. Advances in Biochemical Engineering/Biotechnology, 81, 1–30.

    Article  CAS  Google Scholar 

  61. Green, D. W., & Perry, R. H. (2008). Perry’s chemical engineers’ hand book (8th ed.). New York: McGraw-Hill Companies Inc.

    Google Scholar 

  62. Läntelä, J., Rasi, S., Lehtinen, J., & Rintala, J. (2012). Landfill gas upgrading with pilot-scale water scrubber: performance assessment with absorption water recycling. Applied energy, 92, 307–314.

    Article  Google Scholar 

  63. Zhao, Q., Leonhardt, E., MacConnell, C., Frear, C., & Chen, S. (2010). Purification technologies for biogas generated by anaerobic digestion. CSANR Research Report.

  64. Tippayawong, N., & Thanompongchart, P. (2010). Biogas quality upgrade by simultaneous removal CO2 and H2S in a packed column reactor. Energy, 35, 4531–4535.

    Article  CAS  Google Scholar 

  65. Ofori-Boateng, C., & Kwofie, E. M. (2009). Water scrubbing: a better option for biogas purification for effective storage. World Applied Science Journal, 5, 122–125.

    Google Scholar 

  66. Baciocchi, R., Carnevale, E., Corti, A., Costa, G., Lombardi, L., Olivieri, T., Zanchi, L., & Zingaretti, D. (2012). Innovative process for biogas upgrading with CO2 storage: results from pilot plant operation. Biomass and Bioenergy, 1–10.

  67. Georgiou, D., Petrolekas, P. D., Hatzixanthis, S., & Aivasidis, A. (2007). Absorption of carbon dioxide by raw and treated dye-bath effluents. J Hazardous Mater, 144, 369–376.

    Article  CAS  Google Scholar 

  68. Krich, K., Augenstein, A., Batmale, J., Benemann, J., Rutledge, B., & Salour, D. (2005). Upgrading dairy biogas to biomethane and other fuels. In K. Andrews (Ed.), Biomethane from dairy waste—a sourcebook for the production and use of renewable natural gas in California (pp. 47–69). Clear Concepts: California.

    Google Scholar 

  69. Bourque, H. (2006). Use of liquefied biogas in transport sector. Conférencesur les crédits CO2et la valorisation du biogas. www.apcas.qc.ca. Accessed 21 February 2013.

  70. Persson, M. (2003). Evaluation of upgrading techniques for biogas [Internet] Lund. School of Environmental Engineering. Available from:http://www.sgc.se/dokument/Evaluation.pdf. Accessed 20 February 2013.

  71. Gomes, V. G., & Hassan, M. M. (2001). Coalseam methane recovery by vacuum swing adsorption. SeparPurifTechn, 24, 189–196.

    CAS  Google Scholar 

  72. Montanari, T., Finocchio, E., Salvatore, E., Garuti, G., Giordano, A., Pistarino, C., & Busca, G. (2011). CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents. Energy, 36, 314–319.

    Article  CAS  Google Scholar 

  73. Scholz, M., Melin, T., & Wessling, M. (2013). Transforming biogas into biomethane using membrane technology. Renewable and Sustainable Energy Reviews, 17, 199–212.

    Article  CAS  Google Scholar 

  74. Basu, S., Asim, L. K., Angels, C. O., Chunqing, L., & Ivo, F. J. V. (2009). Membrane-based technologies for biogas separations. Chemical Society reviews. doi:10.1039/b817050a.

    Google Scholar 

  75. Stern, S. A. (1994). Polymers for gas separation: the next decade. Journal of Membrane Science, 94, 1–65.

    Article  Google Scholar 

  76. Lai, Z. P., Bonilla, G., Diaz, I., Nery, J. G., Sujaoti, K., Amat, M. A., Kokkoli, E., Terasaki, O., Thompson, R. W., Tsapatsis, M., & Vlachos, D. G. (2003). Microstructural optimization of a zeolite membrane for organic vapor separation. Science, 300, 456–460.

    CAS  Google Scholar 

  77. Henis, J. M. S., & Tripodi, M. K. (1983). The developing technology of gas separating membranes. Sciences, 220, 11.

    Article  CAS  Google Scholar 

  78. Merkel, T. C., Freeman, B. D., Spontak, R. J., He, Z., Pinnau, I., Meakin, P., & Hill, A. J. (2002). Ultrapermeable, reverse-selective nanocomposite membranes. Science, 296, 519–522.

    Article  CAS  Google Scholar 

  79. Strevett, K. A., Vieth, R. F., & Grasso, D. (1995). Chemo-autotrophic biogas purification for methane enrichment: mechanism and kinetics. ChemEng J BiochemEng J, 58, 71–79.

    Article  CAS  Google Scholar 

  80. Chien-Ya, K., Sheng-Yi, C., Tzu-Ting, H., Le, D., Ling-Kang, H., & Chih-Sheng, L. (2012). Ability of mutant strain of microalgae Chlorella sp. To capture carbon dioxide for biogas upgrading. Applied energy, 93, 176–183.

    Google Scholar 

  81. Kim, S., & Kim, H. T. (2004). Optimization of CO2 absorption process with MEA solution. Carbon Dioxide Utilization for Global Sustainability, 153, 429–434.

    Article  CAS  Google Scholar 

  82. Vannini, C., Munz, G., Mori, G., Lubello, C., Verni, F., & Petroni, G. (2008). Sulphide oxidation to elemental sulphur in a membrane bioreactor: performance and characterization of the selected microbial sulphur-oxidizing community. Systematic and Applied Microbiology, 31, 461–473.

    Article  CAS  Google Scholar 

  83. Beil, M. (2009). Overview on (biogas) upgrading technologies. “European Biomethane Fuel Conference”, Göteborg/Sweden, 2009-09-09. http://www.biogasmax.co.uk/media/3t3_overview_on_upgrading_iset__062510600_0654_30092009.pdf. Accessed 8 Mar 2013.

  84. Persson, M. (2007). Persson, M., (2003). Evaluation of upgrading techniques for biogas. Lund Institute of technology. http://cdm.unfccc.int/filestorage/E/6/T/E6TUR2NNQW9O83ET10CX8HTE4WXR2O/Evaluation%20of%20Upgrading%20Techniques%20for%20Biogas.pdf?t=THd8bXd4Ym1xfDA2DYK9aB2Opw27r_iwL_Ux. Accessed 27 Nov 2013.

  85. Berndt, A. (2006). Carbo Tech Engineering GmbH, Intelligent Utilisation of Biogas—Upgrading and Adding to the Grid.Jonkoping. http://biogas-infoboard.de/pdf/presentation_CarboTech%20Engineering%20GmbH.pdf. Accessed 8 Mar 2013.

  86. De Hullu, J., Maassen, J. I. W., van Meel, P. A., Shazad, S., Vaessen, J. M. P. (2008). Comparing different biogas upgrading techniques. Eindhoven University of Technology, The Netherlands. http://students.chem.tue.nl/ifp24/BiogasPublic.pdf. Accessed 8 Mar 2013.

Download references

Acknowledgements

The writers would like to thank all researchers in Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian Andriani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andriani, D., Wresta, A., Atmaja, T.D. et al. A Review on Optimization Production and Upgrading Biogas Through CO2 Removal Using Various Techniques. Appl Biochem Biotechnol 172, 1909–1928 (2014). https://doi.org/10.1007/s12010-013-0652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0652-x

Keywords

Navigation