Skip to main content

Advertisement

Log in

Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc Against a Broad Range of Microorganisms

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag+, Zn2+, and Cu2+ ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag+ ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag+, Zn2+, and Cu2+ ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chon, H., Woo, S. I., and Park, S. E. (1996), Elsevier, Amsterdam

  2. Rožić, M., Cerjan-Stefanović, Š., Kurajica, S., Vančina, V., & Hodžić, E. (2000). Water Research, 34, 3675–3681.

    Article  Google Scholar 

  3. Saint–Cricq, P., Kamimura, Y., Itabashi, K., Sugawara–Narutaki, A., Shimojima, A., and Okubo, T. (2012) European Journal of Inorganic Chemistry, 2012, 3398–3402

  4. Win, D. T. (2012). AU Journal, 11, 36–41.

    Google Scholar 

  5. Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., Kanzaki, Y., Hamashima, H., & Sasatsu, M. (2002). Journal of Inorganic Biochemistry, 92, 37–42.

    Article  CAS  Google Scholar 

  6. Kralj, M., & Pavelic, K. (2003). EMBO Reports, 4, 1008–1012.

    Article  CAS  Google Scholar 

  7. Abe, Y., Ishii, M., Takeuchi, M., Ueshige, M., Tanaka, S., & Akagawa, Y. (2004). Journal of Oral Rehabilitation, 31, 568–573.

    Article  CAS  Google Scholar 

  8. Zhang, Y., Zhong, S., Zhang, M., & Lin, Y. (2009). Journal of Materials Science, 44, 457–462.

    Article  CAS  Google Scholar 

  9. Kwakye-Awuah, B., Williams, C., Kenward, M., & Radecka, I. (2008). Journal of Applied Microbiology, 104, 1516–1524.

    Article  CAS  Google Scholar 

  10. Ferreira, L., Fonseca, A. M., Botelho, G., Aguiar, C. A., & Neves, I. C. (2012). Microporous and Mesoporous Materials, 160, 126–132.

    Article  CAS  Google Scholar 

  11. Hrenovic, J., Milenkovic, J., Ivankovic, T., & Rajic, N. (2012). Journal of Hazardous Materials, 201, 260–264.

    Article  Google Scholar 

  12. Malachová, K., Praus, P., Rybková, Z., & Kozák, O. (2011). Applied Clay Science, 53, 642–645.

    Article  Google Scholar 

  13. Niira, R., Yamamoto, T., and Uchida, M., (1990), Google patents

  14. Top, A., & Ülkü, S. (2004). Applied Clay Science, 27, 13–19.

    Article  CAS  Google Scholar 

  15. Hagiwara, Z., Hoshino, S., Ishino, H., Nohara, S., Tagawa, K., and Yamanaka, K., (1988), Google patents.

  16. Kawahara, K., Tsuruda, K., Morishita, M., & Uchida, M. (2000). Dental Materials, 16, 452–455.

    Article  CAS  Google Scholar 

  17. Sallam, M., (2006), University of South Florida

  18. Casemiro, L. A., Martins, C. H. G., Pires-de-Souza, F. D. C., & Panzeri, H. (2008). Gerodontology, 25, 187–194.

    Article  Google Scholar 

  19. Clement, J. L., & Jarrett, P. S. (1994). Metal Based Drugs, 1, 467–482.

    Article  CAS  Google Scholar 

  20. Kamışoğlu, K., Aksoy, E., Akata, B., Hasirci, N., & Baç, N. (2008). Journal of Applied Polymer Science, 110, 2854–2861.

    Article  Google Scholar 

  21. Mehtar, S., Wiid, I., & Todorov, S. (2008). Journal of Hospital Infection, 68, 45–51.

    Article  CAS  Google Scholar 

  22. Rivera-Garza, M., Olguın, M., Garcıa-Sosa, I., Alcántara, D., & Rodrıguez-Fuentes, G. (2000). Microporous and Mesoporous Materials, 39, 431–444.

    Article  CAS  Google Scholar 

  23. Kim, T., Feng, Q., Kim, J., Wu, J., Wang, H., Chen, G., & Cui, F. (1998). Journal of Materials Science. Materials in Medicine, 9, 129–134.

    Article  Google Scholar 

  24. Baldrian, P., (2010) Effect of heavy metals on saprotrophic soil fungi. New York, NY, Springer, pp. 263–279

Download references

Acknowledgments

This research was supported by Yeditepe University. The authors deny any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikrettin Sahin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirci, S., Ustaoğlu, Z., Yılmazer, G.A. et al. Antimicrobial Properties of Zeolite-X and Zeolite-A Ion-Exchanged with Silver, Copper, and Zinc Against a Broad Range of Microorganisms. Appl Biochem Biotechnol 172, 1652–1662 (2014). https://doi.org/10.1007/s12010-013-0647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0647-7

Keywords

Navigation