Abstract
This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible.







Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ramachandra Rao, S., & Ravishankar, G. A. (2000). Journal of the Science of Food and Agriculture, 80, 289–304.
Walton, N. J., Mayer, M. J., & Narbad, A. (2003). Phytochemistry, 63, 505–515.
Priefert, H., Rabenhorst, J., & Steinbüchel, A. (2001). Applied Microbiology and Biotechnology, 56, 296–314.
Barghini, P., Gioia, D. D., Fava, F., & Ruzzi, M. (2007). Microbial Cell Factories, 6, 13.
De Faveri, D., Torre, P., Aliakbarian, B., Domínguez, J. M., Perego, P., & Converti, A. (2007). Biochemical Engineering Journal, 36, 268–275.
Ding, P., Garrett, M., Loe, Ø., Nienow, A. W., & Pacek, A. W. (2012). Industrial and Engineering Chemistry, 51, 184–188.
Fargues, C., Mathias, Á., Silva, J., & Rodrigues, A. (1996). Chemical Engineering and Technology, 19, 127–136.
Fargues, C., Mathias, Á., & Rodrigues, A. (1996). Industrial and Engineering Chemistry, 35, 28–36.
Kang, S. M., Jung, H. Y., Kang, Y. M., Min, J. Y., Karigar, C. S., Yang, J. K., et al. (2005). Journal of Agricultural and Food Chemistry, 53, 3449–3453.
Muheim, A., & Lerch, K. (1999). Applied Microbiology and Biotechnology, 51, 456–461.
Overhage, J., Priefert, H., & Steinbüchel, A. (1999). Applied and Environmental Microbiology, 65, 4837–4847.
Overhage, J., Steinbüchel, A., & Priefert, H. (2003). Applied and Environmental Microbiology, 69, 6569–6576.
Parpot, P., Bettencourt, A. P., Carvalho, A. M., & Belgsir, E. M. (2000). Journal of Applied Electrochemistry, 30, 727–731.
Plaggenborg, R., Overhage, J., Loos, A., Archer, J. A. C., Lessard, P., Sinskey, A. J., et al. (2006). Applied Microbiology and Biotechnology, 72, 745–755.
Pometto, A. L., & Crawford, D. L. (1983). Applied and Environmental Microbiology, 45, 1582–1585.
Sales, F. G., Maranhão, L. C. A., Filho, N. M. L., & Abreu, C. A. M. (2007). Chemical Engineering Science, 62, 5386–5391.
Tarabanko, V. E., Hendogina, Y. V., Petuhov, D. V., & Pervishina, E. P. (2000). Reaction Kinetics and Catalysis Letters, 69, 361–368.
Tarabanko, V. E., Petukhov, D. V., & Selyutin, G. E. (2004). Kinetics and Catalysis, 45, 569–577.
Tomlinson, G. H., & Hibbert, H. (1936). Journal of the American Chemical Society, 58, 348–353.
Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2011). New Biotechnology, 28, 656–664.
Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2011). Current Microbiology, 62, 990–998.
Bernard, O., Bastin, G., Stentelaire, C., Lesage-Meessen, L., & Asther, M. (1999). Biotechnology and Bioengineering, 65, 558–571.
Brochado, A. R., Matos, C., Møller, B. L., Hansen, J., Mortensen, U. H., & Patil, K. R. (2010). Microbial Cell Factories, 9, 84.
Di Gioia, D., Luziatelli, F., Negroni, A., Ficca, A. G., Fava, F., & Ruzzi, M. (2010). Journal of Biotechnology, 156, 309–316.
da Silva, E. A. B., Zabkova, M., Araújo, J. D., Cateto, C. A., Barreiro, M. F., Belgacem, M. N., et al. (2009). Chemical Engineering Research and Design, 87, 1276–1292.
Wu, Y. T., Feng, M., Ding, W. W., Tang, X. Y., Zhong, Y. H., & Xiao, Z. Y. (2008). Biochemical Engineering Journal, 41, 193–197.
Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2012). Applied Biochemistry and Biotechnology, 166, 1–12.
Bloem, A., Bertrand, A., Lonvaud-Funel, A., & De Revel, G. (2007). Letters in Applied Microbiology, 44, 62–67.
Converti, A., Aliakbarian, B., Domínguez, J. M., Vázquez, G. B., & Perego, P. (2010). Brazilian Journal of Microbiology, 41, 519–530.
Lesage-Meessen, L., Stentelaire, C., Lomascolo, A., Couteau, D., Asther, M., Moukha, S., et al. (1999). Journal of the Science of Food and Agriculture, 79, 487–490.
Lesage-Meessen, L., Lomascolo, A., Bonnin, E., Thibault, J. F., Buleon, A., Roller, M., et al. (2002). Applied Biochemistry and Biotechnology, 102–103, 141–153.
Wangrangsimagul, N., Klinsakul, K., Vangnai, A. S., Wongkongkatep, J., Inprakhon, P., Honda, K., et al. (2012). Applied Microbiology and Biotechnology, 93, 555–563.
Witthuhn, R. C., van der Merwe, E., Venter, P., & Cameron, M. (2012). International Journal of Food Microbiology, 157, 113–117.
Di Gioia, D., Sciubba, L., Ruzzi, M., Setti, L., & Fava, F. (2009). Journal of Chemical Technology and Biotechnology, 84, 1441–1448.
Kishioka, S., & Yamada, A. (2005). Analytical Sciences, 21, 429–432.
Panoutsopoulos, G. I., & Beedham, C. (2005). Cellular Physiology and Biochemistry, 15, 89–98.
Sanchez, S., & Demain, A. L. (2011). Organic Process Research and Development, 15, 224–230.
Scháněl, L., Blaich, R., & Esser, K. (1971). Archiv für Mikrobiologie, 77, 140–150.
Venkitasubramanian, P., Daniels, L., Das, S., Lamm, A. S., & Rosazza, J. P. N. (2008). Enzyme Microbial Technology, 42, 130–137.
Hua, D., Ma, C., Song, L., Lin, S., Zhang, Z., Deng, Z., et al. (2007). Applied Microbiology and Biotechnology, 74, 783–790.
Lee, E. G., Yoon, S. H., Das, A., Lee, S. H., Li, C., Kim, J. Y., et al. (2009). Biotechnology and Bioengineering, 102, 200–208.
Lima, C., França, F., Sérvulo, E., Resende, M., & Cardoso, V. (2007). Applied Biochemistry and Biotechnology, 137, 463–470.
Yamada, M., Okada, Y., Yoshida, T., & Nagasawa, T. (2008). Biotechnology Letters, 30, 665–670.
Englis, D. T., & Manchester, M. (1949). Analytical Chemistry, 21, 591–593.
Sachdev, D., Dubey, A., Mishra, B. G., & Kannan, S. (2008). Catalysis Communications, 9, 391–394.
Avila, M., González, M. C., Zougagh, M., Escarpa, A., & Ríos, A. (2007). Electrophoresis, 28, 4233–4239.
Barik, A., Priyadarsini, K. I., & Mohan, H. (2004). Radiation Physics and Chemistry, 70, 687–696.
Bettazzi, F., Palchetti, I., Sisalli, S., & Mascini, M. (2006). Analytica Chimica Acta, 555, 134–138.
Chethana, B. K., Basavanna, S., & Arthoba Naik, Y. (2012). Journal of Chemical and Pharmaceutical Research, 4, 538–545.
Hardcastle, J. L., Paterson, C. J., & Compton, R. G. (2001). Electroanalysis, 13, 899–905.
Hiremath, D. C., Kiran, T. S., & Nandibewoor, S. T. (2007). International Journal of Chemical Kinetics, 39, 236–244.
Jinyun, P., Chuantao, H., & Xiaoya, H. (2012). International Journal of Electrochemical Society, 7, 1724–1733.
Nikolelis, D. P., & Theoharis, G. (2002). Electroanalysis, 14, 1661–1667.
Salazar, R., Navarrete-Encina, P. A., Camargo, C., Squella, J. A., & Nunez-Vergara, L. J. (2008). Journal of Electroanalytical Chemistry, 622, 29–36.
Li, Q., Batchelor-McAuley, C., & Compton, R. G. (2010). Journal of Physical Chemistry B, 114, 9713–9719.
Agüı́, L., López-Guzmán, J., González-Cortés, A., Yáñez-Sedeño, P., & Pingarrón, J. (1999). Analytica Chimica Acta, 385, 241–248.
Chan, W. H., Lee, W. M., Foo, C. L., & Tang, W. K. (1987). Analyst, 112, 845–848.
Chandrasekaran, M., Noel, M., & Krishnan, V. (1992). Journal of Applied Electrochemistry, 22, 1072–1076.
Jow, J. J., & Chou, T. C. (1987). Electrochimica Acta, 32, 311–317.
Parpot, P., Bettencourt, A., Chamoulaud, G., Kokoh, K., & Belgsir, E. (2004). Electrochimica Acta, 49, 397–403.
Trabelsi, S. K., Tahar, N. B., Trabelsi, B., & Abdelhedi, R. (2005). Journal of Applied Electrochemistry, 35, 967–973.
Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications (2nd ed.). New York: John Wiley and Sons.
Acknowledgments
A part of this work has been performed during William Giraud’s thesis partially sponsored by Chêne & Cie company.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Giraud, W., Mirabel, M. & Comtat, M. Electroanalysis may be used in the Vanillin Biotechnological Production. Appl Biochem Biotechnol 172, 1953–1963 (2014). https://doi.org/10.1007/s12010-013-0631-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12010-013-0631-2

