Skip to main content
Log in

Electroanalysis may be used in the Vanillin Biotechnological Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study shows that electroanalysis may be used in vanillin biotechnological production. As a matter of fact, vanillin and some molecules implicated in the process like eugenol, ferulic acid, and vanillic acid may be oxidized on electrodes made of different materials (gold, platinum, glassy carbon). By a judicious choice of the electrochemical method and the experimental conditions the current intensity is directly proportional to the molecule concentrations in a range suitable for the biotechnological process. So, it is possible to imagine some analytical strategies to control some steps in the vanillin biotechnological production: by sampling in the batch reactor during the process, it is possible to determine out of line the concentration of vanillin, eugenol, ferulic acid, and vanillic acid with a gold rotating disk electrode, and low concentration of vanillin with addition of hydrazine at an amalgamated electrode. Two other possibilities consist in the introduction of electrodes directly in the batch during the process; the first one with a gold rotating disk electrode using linear sweep voltammetry and the second one requires three gold rotating disk electrodes held at different potentials for chronoamperometry. The last proposal is the use of ultramicroelectrodes in the case when stirring is not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Ramachandra Rao, S., & Ravishankar, G. A. (2000). Journal of the Science of Food and Agriculture, 80, 289–304.

    Article  Google Scholar 

  2. Walton, N. J., Mayer, M. J., & Narbad, A. (2003). Phytochemistry, 63, 505–515.

    Article  CAS  Google Scholar 

  3. Priefert, H., Rabenhorst, J., & Steinbüchel, A. (2001). Applied Microbiology and Biotechnology, 56, 296–314.

    Article  CAS  Google Scholar 

  4. Barghini, P., Gioia, D. D., Fava, F., & Ruzzi, M. (2007). Microbial Cell Factories, 6, 13.

    Article  Google Scholar 

  5. De Faveri, D., Torre, P., Aliakbarian, B., Domínguez, J. M., Perego, P., & Converti, A. (2007). Biochemical Engineering Journal, 36, 268–275.

    Article  Google Scholar 

  6. Ding, P., Garrett, M., Loe, Ø., Nienow, A. W., & Pacek, A. W. (2012). Industrial and Engineering Chemistry, 51, 184–188.

    Article  CAS  Google Scholar 

  7. Fargues, C., Mathias, Á., Silva, J., & Rodrigues, A. (1996). Chemical Engineering and Technology, 19, 127–136.

    Article  CAS  Google Scholar 

  8. Fargues, C., Mathias, Á., & Rodrigues, A. (1996). Industrial and Engineering Chemistry, 35, 28–36.

    Article  CAS  Google Scholar 

  9. Kang, S. M., Jung, H. Y., Kang, Y. M., Min, J. Y., Karigar, C. S., Yang, J. K., et al. (2005). Journal of Agricultural and Food Chemistry, 53, 3449–3453.

    Article  CAS  Google Scholar 

  10. Muheim, A., & Lerch, K. (1999). Applied Microbiology and Biotechnology, 51, 456–461.

    Article  CAS  Google Scholar 

  11. Overhage, J., Priefert, H., & Steinbüchel, A. (1999). Applied and Environmental Microbiology, 65, 4837–4847.

    CAS  Google Scholar 

  12. Overhage, J., Steinbüchel, A., & Priefert, H. (2003). Applied and Environmental Microbiology, 69, 6569–6576.

    Article  CAS  Google Scholar 

  13. Parpot, P., Bettencourt, A. P., Carvalho, A. M., & Belgsir, E. M. (2000). Journal of Applied Electrochemistry, 30, 727–731.

    Article  CAS  Google Scholar 

  14. Plaggenborg, R., Overhage, J., Loos, A., Archer, J. A. C., Lessard, P., Sinskey, A. J., et al. (2006). Applied Microbiology and Biotechnology, 72, 745–755.

    Article  CAS  Google Scholar 

  15. Pometto, A. L., & Crawford, D. L. (1983). Applied and Environmental Microbiology, 45, 1582–1585.

    CAS  Google Scholar 

  16. Sales, F. G., Maranhão, L. C. A., Filho, N. M. L., & Abreu, C. A. M. (2007). Chemical Engineering Science, 62, 5386–5391.

    Article  CAS  Google Scholar 

  17. Tarabanko, V. E., Hendogina, Y. V., Petuhov, D. V., & Pervishina, E. P. (2000). Reaction Kinetics and Catalysis Letters, 69, 361–368.

    Article  CAS  Google Scholar 

  18. Tarabanko, V. E., Petukhov, D. V., & Selyutin, G. E. (2004). Kinetics and Catalysis, 45, 569–577.

    Article  CAS  Google Scholar 

  19. Tomlinson, G. H., & Hibbert, H. (1936). Journal of the American Chemical Society, 58, 348–353.

    Article  CAS  Google Scholar 

  20. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2011). New Biotechnology, 28, 656–664.

    Article  CAS  Google Scholar 

  21. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2011). Current Microbiology, 62, 990–998.

    Article  CAS  Google Scholar 

  22. Bernard, O., Bastin, G., Stentelaire, C., Lesage-Meessen, L., & Asther, M. (1999). Biotechnology and Bioengineering, 65, 558–571.

    Article  CAS  Google Scholar 

  23. Brochado, A. R., Matos, C., Møller, B. L., Hansen, J., Mortensen, U. H., & Patil, K. R. (2010). Microbial Cell Factories, 9, 84.

    Article  Google Scholar 

  24. Di Gioia, D., Luziatelli, F., Negroni, A., Ficca, A. G., Fava, F., & Ruzzi, M. (2010). Journal of Biotechnology, 156, 309–316.

    Article  Google Scholar 

  25. da Silva, E. A. B., Zabkova, M., Araújo, J. D., Cateto, C. A., Barreiro, M. F., Belgacem, M. N., et al. (2009). Chemical Engineering Research and Design, 87, 1276–1292.

    Article  Google Scholar 

  26. Wu, Y. T., Feng, M., Ding, W. W., Tang, X. Y., Zhong, Y. H., & Xiao, Z. Y. (2008). Biochemical Engineering Journal, 41, 193–197.

    Article  CAS  Google Scholar 

  27. Ashengroph, M., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2012). Applied Biochemistry and Biotechnology, 166, 1–12.

    Article  CAS  Google Scholar 

  28. Bloem, A., Bertrand, A., Lonvaud-Funel, A., & De Revel, G. (2007). Letters in Applied Microbiology, 44, 62–67.

    Article  CAS  Google Scholar 

  29. Converti, A., Aliakbarian, B., Domínguez, J. M., Vázquez, G. B., & Perego, P. (2010). Brazilian Journal of Microbiology, 41, 519–530.

    Article  CAS  Google Scholar 

  30. Lesage-Meessen, L., Stentelaire, C., Lomascolo, A., Couteau, D., Asther, M., Moukha, S., et al. (1999). Journal of the Science of Food and Agriculture, 79, 487–490.

    Article  CAS  Google Scholar 

  31. Lesage-Meessen, L., Lomascolo, A., Bonnin, E., Thibault, J. F., Buleon, A., Roller, M., et al. (2002). Applied Biochemistry and Biotechnology, 102–103, 141–153.

    Article  Google Scholar 

  32. Wangrangsimagul, N., Klinsakul, K., Vangnai, A. S., Wongkongkatep, J., Inprakhon, P., Honda, K., et al. (2012). Applied Microbiology and Biotechnology, 93, 555–563.

    Article  CAS  Google Scholar 

  33. Witthuhn, R. C., van der Merwe, E., Venter, P., & Cameron, M. (2012). International Journal of Food Microbiology, 157, 113–117.

    Article  CAS  Google Scholar 

  34. Di Gioia, D., Sciubba, L., Ruzzi, M., Setti, L., & Fava, F. (2009). Journal of Chemical Technology and Biotechnology, 84, 1441–1448.

    Article  Google Scholar 

  35. Kishioka, S., & Yamada, A. (2005). Analytical Sciences, 21, 429–432.

    Article  CAS  Google Scholar 

  36. Panoutsopoulos, G. I., & Beedham, C. (2005). Cellular Physiology and Biochemistry, 15, 89–98.

    Article  CAS  Google Scholar 

  37. Sanchez, S., & Demain, A. L. (2011). Organic Process Research and Development, 15, 224–230.

    Article  CAS  Google Scholar 

  38. Scháněl, L., Blaich, R., & Esser, K. (1971). Archiv für Mikrobiologie, 77, 140–150.

    Article  Google Scholar 

  39. Venkitasubramanian, P., Daniels, L., Das, S., Lamm, A. S., & Rosazza, J. P. N. (2008). Enzyme Microbial Technology, 42, 130–137.

    Article  CAS  Google Scholar 

  40. Hua, D., Ma, C., Song, L., Lin, S., Zhang, Z., Deng, Z., et al. (2007). Applied Microbiology and Biotechnology, 74, 783–790.

    Article  CAS  Google Scholar 

  41. Lee, E. G., Yoon, S. H., Das, A., Lee, S. H., Li, C., Kim, J. Y., et al. (2009). Biotechnology and Bioengineering, 102, 200–208.

    Article  CAS  Google Scholar 

  42. Lima, C., França, F., Sérvulo, E., Resende, M., & Cardoso, V. (2007). Applied Biochemistry and Biotechnology, 137, 463–470.

    Article  Google Scholar 

  43. Yamada, M., Okada, Y., Yoshida, T., & Nagasawa, T. (2008). Biotechnology Letters, 30, 665–670.

    Article  CAS  Google Scholar 

  44. Englis, D. T., & Manchester, M. (1949). Analytical Chemistry, 21, 591–593.

    Article  CAS  Google Scholar 

  45. Sachdev, D., Dubey, A., Mishra, B. G., & Kannan, S. (2008). Catalysis Communications, 9, 391–394.

    Article  CAS  Google Scholar 

  46. Avila, M., González, M. C., Zougagh, M., Escarpa, A., & Ríos, A. (2007). Electrophoresis, 28, 4233–4239.

    Article  CAS  Google Scholar 

  47. Barik, A., Priyadarsini, K. I., & Mohan, H. (2004). Radiation Physics and Chemistry, 70, 687–696.

    Article  CAS  Google Scholar 

  48. Bettazzi, F., Palchetti, I., Sisalli, S., & Mascini, M. (2006). Analytica Chimica Acta, 555, 134–138.

    Article  CAS  Google Scholar 

  49. Chethana, B. K., Basavanna, S., & Arthoba Naik, Y. (2012). Journal of Chemical and Pharmaceutical Research, 4, 538–545.

    CAS  Google Scholar 

  50. Hardcastle, J. L., Paterson, C. J., & Compton, R. G. (2001). Electroanalysis, 13, 899–905.

    Article  CAS  Google Scholar 

  51. Hiremath, D. C., Kiran, T. S., & Nandibewoor, S. T. (2007). International Journal of Chemical Kinetics, 39, 236–244.

    Article  CAS  Google Scholar 

  52. Jinyun, P., Chuantao, H., & Xiaoya, H. (2012). International Journal of Electrochemical Society, 7, 1724–1733.

    Google Scholar 

  53. Nikolelis, D. P., & Theoharis, G. (2002). Electroanalysis, 14, 1661–1667.

    Article  CAS  Google Scholar 

  54. Salazar, R., Navarrete-Encina, P. A., Camargo, C., Squella, J. A., & Nunez-Vergara, L. J. (2008). Journal of Electroanalytical Chemistry, 622, 29–36.

    Article  CAS  Google Scholar 

  55. Li, Q., Batchelor-McAuley, C., & Compton, R. G. (2010). Journal of Physical Chemistry B, 114, 9713–9719.

    Article  CAS  Google Scholar 

  56. Agüı́, L., López-Guzmán, J., González-Cortés, A., Yáñez-Sedeño, P., & Pingarrón, J. (1999). Analytica Chimica Acta, 385, 241–248.

    Article  Google Scholar 

  57. Chan, W. H., Lee, W. M., Foo, C. L., & Tang, W. K. (1987). Analyst, 112, 845–848.

    Article  CAS  Google Scholar 

  58. Chandrasekaran, M., Noel, M., & Krishnan, V. (1992). Journal of Applied Electrochemistry, 22, 1072–1076.

    Article  CAS  Google Scholar 

  59. Jow, J. J., & Chou, T. C. (1987). Electrochimica Acta, 32, 311–317.

    Article  CAS  Google Scholar 

  60. Parpot, P., Bettencourt, A., Chamoulaud, G., Kokoh, K., & Belgsir, E. (2004). Electrochimica Acta, 49, 397–403.

    Article  CAS  Google Scholar 

  61. Trabelsi, S. K., Tahar, N. B., Trabelsi, B., & Abdelhedi, R. (2005). Journal of Applied Electrochemistry, 35, 967–973.

    Article  CAS  Google Scholar 

  62. Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications (2nd ed.). New York: John Wiley and Sons.

    Google Scholar 

Download references

Acknowledgments

A part of this work has been performed during William Giraud’s thesis partially sponsored by Chêne & Cie company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Mirabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giraud, W., Mirabel, M. & Comtat, M. Electroanalysis may be used in the Vanillin Biotechnological Production. Appl Biochem Biotechnol 172, 1953–1963 (2014). https://doi.org/10.1007/s12010-013-0631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0631-2

Keywords