Skip to main content
Log in

Integrated Use of Residues from Olive Mill and Winery for Lipase Production by Solid State Fermentation with Aspergillus sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett–Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (32) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morillo, J. A., Antizar-Ladislao, B., Monteoliva-Sánchez, M., Ramos-Cormenzana, A., & Russell, N. J. (2009). Applied Microbiology and Biotechnology, 82, 25–39.

    Article  CAS  Google Scholar 

  2. Assas, N., Ayed, L., Marouani, L., & Hamdi, M. (2002). Process Biochemistry, 38, 361–365.

    Article  CAS  Google Scholar 

  3. Haagensen, F., Skiadas, I. V., Gavala, H. N., & Ahring, B. K. (2009). Biomass and Bioenergy, 33, 1643–1651.

    Article  CAS  Google Scholar 

  4. Abrunhosa, L., Oliveira, F., Dantas, D., Gonçalves, C., & Belo, I. (2013). Bioprocess and Biosyst Eng, 36, 285–291.

    Article  CAS  Google Scholar 

  5. de la Casa, J. A., Romero, I., Jiménez, J., & Castro, E. (2012). Ceramics Int., 38, 5027–5037.

    Article  Google Scholar 

  6. Bustamante, M. A., Moral, R., Paredes, C., Pérez-Espinosa, A., Moreno-Caselles, J., & Pérez-Murcia, M. D. (2008). Waste manage, 28, 372–380.

    Article  CAS  Google Scholar 

  7. Eusébio, A., Mateus, M., Baeta-Hall, L., Almeida-Vara, E., & Duarte, J. C. (2005). Water Science and Technology, 51, 107–112.

    Google Scholar 

  8. Pandey, A. (2003). Biochemical Engineering Journal, 13, 81–84.

    Article  CAS  Google Scholar 

  9. Chakradhar, D., Javeed, S., & Sattur, A. P. (2009). J. Ind. Microbiol. Biot., 36, 1179–1187.

    Article  CAS  Google Scholar 

  10. Pérez-Guerra, N., Torrado-Agrasar, A., López-Macias, C., & Pastrana, L. (2003). Electronic Journal of Agricultural Food chemistry, 2, 343–350.

    Google Scholar 

  11. Gutarra, M. L. E., Cavalcanti, E. D. C., Castilho, L. R., Freire, D. M. G., & Santanna, G. L., Jr. (2005). Applied Biochemistry and Biotechnology, 121–124, 105–116.

    Article  Google Scholar 

  12. Chen, L., Yang, X., Raza, W., Luo, J., Zhang, F., & Shen, Q. (2011). Bioresource Technology, 102, 3900–3910.

    Article  CAS  Google Scholar 

  13. Cordova, J., Nemmaoui, M., Ismaı̈li-Alaoui, M., Morin, A., Roussos, S., Raimbault, M., & Benjilali, B. (1998). J. Mol. Catal. B-Enzym, 5, 75–78.

    Article  CAS  Google Scholar 

  14. Moftah, O. A. S., Grbavčić, S., Zuža, M., Luković, N., Bezbradica, D., & Knežević-Jugović, Z. (2012). Applied Biochemistry and Biotechnology, 166, 348–364.

    Article  CAS  Google Scholar 

  15. Hegedus, D. D., & Khachatourians, G. G. (1988). Biotechnology Letters, 10, 637–642.

    Article  CAS  Google Scholar 

  16. Aloui, F., Abid, N., Roussos, S., & Sayadi, S. (2007). Biochemical Engineering Journal, 35, 120–125.

    Article  CAS  Google Scholar 

  17. Giannoutsou, E. P., Katsifas, E. A., Geli, A., & Karagouni, A. D. (2012). World Journal of Microbiology and Biotechnology, 28, 849–856.

    Article  CAS  Google Scholar 

  18. Vishwanatha, K. S., Apu-Rao, A. G., & Singh, S. A. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 129–138.

    Article  CAS  Google Scholar 

  19. Perrone, G., Varga, J., Susca, A., Frisvad, J. C., Stea, G., Kocsubé, S., Tóth, B., Kozakiewicz, Z., & Samson, R. A. (2008). International Journal of Systematic and Evolutionary Microbiology, 58, 1032–1039.

    Article  Google Scholar 

  20. Delabona, P. S., Pirota, R. D. P. B., Codima, C. A., Tremacoldi, C. R., Rodrigues, A., & Farinas, C. S. (2013). Ind Crops Prod, 42, 236–242.

    Article  CAS  Google Scholar 

  21. Gopinath, S. C. B., Anbu, P., & Hilda, A. (2005). Mycoscience, 46, 119–126.

    Article  CAS  Google Scholar 

  22. Serra, R., Cabañes, F. J., Perrone, G., Castellá, G., Venâncio, A., Mulè, G., & Kozakiewicz, Z. (2006). Mycologia, 98, 295–306.

    Article  Google Scholar 

  23. Kouker, G., & Jaeger, K. (1987). Applied and Environmental Microbiology, 53, 211–213.

    CAS  Google Scholar 

  24. Gomes, N., Gonçalves, C., García-Román, M., Teixeira, J. A., & Belo, I. (2011). Analytical Methods, 3, 1008–1013.

    Article  CAS  Google Scholar 

  25. Charney, J., & Tomarelli, M. (1947). The Journal of Biological Chemistry, 171, 501–505.

    CAS  Google Scholar 

  26. Mar, S., Morales, H., Ramos, A. J., & Sanchis, V. (2006). Society, 1474, 1468–1474.

    Google Scholar 

  27. Jarvis, G. N., & Thiele, J. H. (1997). Journal of Microbiological Methods, 29, 41–47.

    Article  CAS  Google Scholar 

  28. Kim, J. T., Kang, S. G., Woo, J. H., Lee, J. H., Jeong, B. C., & Kim, S. J. (2007). Applied Microbiology and Biotechnology, 74, 820–828.

    Article  CAS  Google Scholar 

  29. Vassilev, N., Baca, M. T., Vassileva, M., Franco, I., & Azcon, R. (1995). Applied Microbiology and Biotechnology, 44, 546–549.

    Article  CAS  Google Scholar 

  30. Cayuela, M. L., Sánchez-Monedero, M. A., & Roig, A. (2010). Biodegradation, 21, 465–473.

    Article  Google Scholar 

  31. Falony, G., Armas, J. C., Mendoza, J. C. D., & Hernández, J. L. M. (2006). Food Technology and Biotechnology, 44, 235–240.

    CAS  Google Scholar 

  32. Ali, S., & Rafi, H. (2010). Engineering in Life Science, 10, 465–473.

    Article  CAS  Google Scholar 

  33. Crognale, S., D’Annibale, A., Federici, F., Fenice, M., Quaratino, D., & Petruccioli, M. (2006). Journal of Chemical Technology and Biotechnology, 81, 1547–1555.

    Article  CAS  Google Scholar 

  34. Rodríguez-Couto, S. (2008). Biotechnology Journal, 3, 859–870.

    Article  Google Scholar 

  35. Han, J. R., An, C. H., & Yuan, J. M. (2005). Journal of Applied Microbiology, 99, 910–915.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

José Manuel Salgado is grateful for Postdoctoral fellowship (EX-2010-0402) of Education Ministry of Spanish Government. Luís Abrunhosa was supported by the grant SFRH/BPD/43922/2008 from Fundação para a Ciência e Tecnologia—FCT, Portugal. Authors thank Fundação para a Ciência e a Tecnologia (FCT) for financial support through the project FCT Pest-OE/EQB/LA0023/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Belo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado, J.M., Abrunhosa, L., Venâncio, A. et al. Integrated Use of Residues from Olive Mill and Winery for Lipase Production by Solid State Fermentation with Aspergillus sp.. Appl Biochem Biotechnol 172, 1832–1845 (2014). https://doi.org/10.1007/s12010-013-0613-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0613-4

Keywords

Navigation