Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 3, pp 1307–1319 | Cite as

Carotenoid and Fatty Acid Compositions of an Indigenous Ettlia texensis Isolate (Chlorophyceae) Under Phototrophic and Mixotrophic Conditions

  • Arzu YıldırımEmail author
  • Zeliha Demirel
  • Müge İşleten-Hoşoğlu
  • İsmail Hakkı Akgün
  • Sevde Hatipoğlu-Uslu
  • Meltem Conk-Dalay
Article

Abstract

Ettlia oleoabundance (formerly known as Neochloris oleoabundance) is an attractive candidate for biodiesel production because of its high lipid accumulation, and it’s taking the majority of the attention among the strains of Ettlia genus; however, potential of the other genus members is unknown. An indigenous strain from Salda Lake (South West Turkey) identified by 18S rDNA sequencing as Ettlia texensis (GenBank accession no: JQ038221), and its fatty acid and carotenoid compositions under phototrophic and mixotrophic conditions was investigated to evaluate the potential of the strain for commercial uses. A threefold increase was observed in total lipid content (total fatty acids; from 13 % to 37 %) in mixotrophic culture respect to the phototrophic growth conditions. The oleic acid (C18:1) and alpha-linolenic acid (18:3) were the major unsaturated fatty acids accounting for 40 % and 13.2 % of total fatty acids in mixotrophic culture, respectively. Carotenoid analyses of the mixotrophic culture revealed the metabolite canthaxanthin, a commercially valuable carotenoid used mainly for food coloring, was the major constituent among other pigments. The possible use of E. texensis in biotechnological applications is discussed.

Keywords

Carotenoid Cell disruption Ettlia texensis Fatty acid Molecular identification Neochloris 

Abbreviations

TAGEM

Turkish General Directorate of Agricultural Research and Policy

TUBITAK

The Scientific and Technological Research Council of Turkey

PHOT

Phototrophic culture conditions

MIX

Mixotrophic culture conditions

EGEMACC

The Microalgae Culture Collection of Ege University

BBM

Bold basal medium

TBE

Tris–boric acid–EDTA

NCBI

National Center for Biotechnology Information

MEGA

Molecular Evolutionary Genetics Analysis

U-HPLC

Ultra high-performance liquid chromatography

BHT

Butylated hydroxytoluene

TFA

Total fatty acids

Notes

Acknowledgments

This work has been supported by the projects from Turkish General Directorate of Agricultural Research and Policy (TAGEM) and The Scientific and Technological Research Council of Turkey (TUBITAK). We would like to thank Prof. Dr. Erdal Bedir for the critical reading of the manuscript.

References

  1. 1.
    Walker, T., Purton, S., Becker, D. K., & Collet, C. (2005). Plant Cell Reports, 24, 629–641.CrossRefGoogle Scholar
  2. 2.
    Pulz, O., & Gross, W. (2004). Applied Microbiology and Biotechnology, 65, 635–648.CrossRefGoogle Scholar
  3. 3.
    Gouveia, L., & Oliveira, A. C. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 269–274.CrossRefGoogle Scholar
  4. 4.
    Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Renewable & Sustainable Energy Reviews, 14, 217–232.CrossRefGoogle Scholar
  5. 5.
    Starr, R. C. (1955). Indiana University Publ. Sci. Ser. No. 20. 1–111: Indiana University Press, Bloomington, Indiana.Google Scholar
  6. 6.
    Deason, T. R., Silva, P. C., Watanabe, S., & Floyd, G. L. (1991). Plant Systematics and Evolution, 177, 213–219.CrossRefGoogle Scholar
  7. 7.
    Watanabe, S., Himizu, A., Lewis, L. A., Floyd, G. L., & Fuerst, P. A. (2000). Journal of Phycology, 36, 596–604.CrossRefGoogle Scholar
  8. 8.
    Shoup, S., & Lewis, L. A. (2003). Journal of Phycology, 39, 789–796.CrossRefGoogle Scholar
  9. 9.
    Lewis, L. A., & McCourt, R. M. (2004). American Journal of Botany, 91(10), 1535–1556.CrossRefGoogle Scholar
  10. 10.
    Li, Y. Q., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Applied Microbiology and Biotechnology, 81(4), 629–636.CrossRefGoogle Scholar
  11. 11.
    Gouveia, L., Marques, A. E., Silva, T. L., & Reis, A. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 821–826.CrossRefGoogle Scholar
  12. 12.
    Wang, B., & Lan, C. Q. (2011). Canadian Journal of Chemical Engineering, 89, 932–939.CrossRefGoogle Scholar
  13. 13.
    Giovanardi, M., Ferroni, L., Baldisserotto, C., Tedeschi, P., Maietti, A., Pantaleoni, L., et al. (2012). Protoplasma, 224, 167–177.Google Scholar
  14. 14.
    Stein, J.R. (1973). Handbook of phycological methods: Culture methods and growth measurements. Cambridge University Press, Cambridge.Google Scholar
  15. 15.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). Molecular Biology and Evolution, 28, 2731–2739.CrossRefGoogle Scholar
  16. 16.
    Lichtenthaler, H. K., & Buschmann, C. (2001). In Current protocols in food analytical chemistry. New York: John Wiley and Sons, Inc. F4.3.1-F4.3.8.Google Scholar
  17. 17.
    Bligh, E. G., & Dyer, W. J. (1959). Canadian Journal of Biochemistry and Physiology, 37, 911–917.CrossRefGoogle Scholar
  18. 18.
    Christie, W.W. (2003). In Lipid analysis: Isolation, separation and structural analysis of lipids, 3rd ed. (Christie, W. W., ed.), J. Barnes and Associates, Dundee, Scotland, pp. 205–225.Google Scholar
  19. 19.
    Lewis, L. A., Wilcox, L. W., Fuerst, P. A., & Floyd, G. L. (1992). Journal of Phycology, 28, 375–380.CrossRefGoogle Scholar
  20. 20.
    Neustupa, J., Elias, M., Skaloud, P., Nemcova, Y., & Sejnohova, L. (2011). Phycologia, 50(1), 57–66.CrossRefGoogle Scholar
  21. 21.
    Domozych, D. S., Ciancia, M., Fangel, J. U., Dalgaard Mikkelsen, M., Ulvskov, P., & Willats, W. G. T. (2012). Frontiers in Plant Sci, 82(3), 1–7.Google Scholar
  22. 22.
    Allard, B., Rager, M., & Templier, J. (2002). Organic Geochemistry, 33, 789–801.CrossRefGoogle Scholar
  23. 23.
    Versteegh, G. J. M., & Blokker, P. (2004). Phycological Research, 52, 325–339.CrossRefGoogle Scholar
  24. 24.
    Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., & Morais, R. (2001). Journal of Applied Phycology, 13, 19–24.CrossRefGoogle Scholar
  25. 25.
    Cinar, I. (2005). Process Biochemistry, 40, 945–949.CrossRefGoogle Scholar
  26. 26.
    Pirastru, L., Darwish, M., Chu, F. L., Perreault, F., Sirois, L., Sleno, L., et al. (2012). Journal of Applied Phycology, 24, 117–124.CrossRefGoogle Scholar
  27. 27.
    Takaichi, S. (2011). Marine Drugs, 9, 1101–1118.CrossRefGoogle Scholar
  28. 28.
    Del Campo, J. A., Moreno, J., Rodriguez, H., Vargas, M. A., Rivas, J., & Guerrero, M. G. (2000). Journal of Biotechnology, 76, 51–59.CrossRefGoogle Scholar
  29. 29.
    Orosa, M., Torres, E., Fidalgo, P., & Abalde, J. (2000). Journal of Applied Phycology, 12, 553–556.CrossRefGoogle Scholar
  30. 30.
    Orosa, M., Valero, J. F., Herrero, C., & Abalde, J. (2001). Biotechnological Letters, 23, 1079–1085.CrossRefGoogle Scholar
  31. 31.
    Santos, A. M., Janssen, M., Lamers, P. P., Evers, W. A. C., & Wijffels, R. H. (2012). Bioresource Technology, 104, 593–599.CrossRefGoogle Scholar
  32. 32.
    Liu, J., Huang, J., Sun, Z., Zhong, Y., Jiang, Y., & Che, F. (2011). Bioresource Technology, 102, 106–110.CrossRefGoogle Scholar
  33. 33.
    Knothe, G. (2009). Energy & Environmental Science, 2, 759–766.CrossRefGoogle Scholar
  34. 34.
    Kang, C. D., Lee, J. S., Park, T. H., & Sim, S. J. (2005). Applied Microbiology and Biotechnology, 68, 237–241.CrossRefGoogle Scholar
  35. 35.
    Rabbani, S., Beyer, P., Lonting, J. V., Hugueney, P., & Kleining, H. (1998). Plant Physiology, 116, 1239–1248.CrossRefGoogle Scholar
  36. 36.
    Mendoza, H., Martel, A. M., Jimenez del Rio, M., & Garcia Reina, G. (1999). Journal of Applied Phycology, 11, 15–19.CrossRefGoogle Scholar
  37. 37.
    Ben-Amotz, A., & Avron, M. (1983). Plant Physiology, 72, 593–597.CrossRefGoogle Scholar
  38. 38.
    Pisal, D. S., & Lele, S. S. (2004). Indian Journal of Biotechnology, 4, 476–483.Google Scholar
  39. 39.
    He, P., Duncan, J., & Barber, J. (2007). Journal of Integrated Plant Biology, 49(4), 447–451.CrossRefGoogle Scholar
  40. 40.
    Lamers, et al. (2010). Biotechnology and Bioengineering, 106(4), 638–648.CrossRefGoogle Scholar
  41. 41.
    Zhekisheva, et al. (2002). Journal of Phycology, 38, 325–331.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Arzu Yıldırım
    • 1
    Email author
  • Zeliha Demirel
    • 1
  • Müge İşleten-Hoşoğlu
    • 1
  • İsmail Hakkı Akgün
    • 1
  • Sevde Hatipoğlu-Uslu
    • 1
  • Meltem Conk-Dalay
    • 1
  1. 1.Engineering Faculty, Department of BioengineeringEge UniversityİzmirTurkey

Personalised recommendations