Skip to main content
Log in

Sensitive Electrochemical Aptasensor for Thrombin Detection Based on Graphene Served as Platform and Graphene Oxide as Enhancer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A sensitive electrochemical aptasensor was developed with conductive graphene served as platform and inert graphene oxide (GO) as enhancer. An electrodeposited nano-Au layer was firstly formed on conductive graphene modified glass carbon electrode surface for further immobilizing of electrochemical redox probe hexacyanoferrates nanoparticles (NiHCFNPs). Subsequently, another nano-Au layer was formed for immobilizing of thrombin aptamer (TBA). In the presence of thrombin, the TBA on the electrode surface could bind with thrombin, which made a barrier for electrons and inhibited the electro-transfer, resulting in the decreased electrochemical signals of NiHCFNPs. Owing to the non-conductivity property of graphene oxide, further decreased electrochemical signals of NiHCFNPs could be obtained via the sandwich reaction with GO-labeled TBA. According to the signal changes before the thrombin recognition and after sandwich reaction, trace detection of thrombin could be achieved. As a result, the proposed approach showed a high sensitivity and a wider linearity to thrombin in the range from 0.005 nM to 50 nM with a detection limit of 1 pM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CVs:

Cyclic voltammetries

DMF:

Dimethylformamide

GO:

Graphene oxide

GCE:

Glass carbon electrode

NiHCFNPs:

Hexacyanoferrates nanoparticles

BSA:

Bovine serum albumin

TBA:

Thrombin aptamer

AuNPs:

Au nanoparticles

Hb:

Hemoglobin

References

  1. Willner, I., & Zayats, M. (2007). Angewandte Chemie International Edition, 46, 6408–6418.

    Article  CAS  Google Scholar 

  2. Tombelli, S., Minunni, A., & Mascini, A. (2005). Biosensors and Bioelectronics, 20, 2424–2434.

    Article  CAS  Google Scholar 

  3. Du, Y., Chen, C. G., Yin, J. Y., Li, B. L., Zhou, M., Dong, S. J., & Wang, E. K. (2010). Analytical Chemistry, 82, 1556–1563.

    Article  CAS  Google Scholar 

  4. Abd-Elgawad, R., Josep, L. A., Eva, B., & Ciara, K. (2005). Analytical Chemistry, 77, 6320–6323.

    Article  Google Scholar 

  5. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., & Toole, J. J. (1992). Nature, 355, 564–566.

    Article  CAS  Google Scholar 

  6. Padmanabhan, K., Padmanabhan, K. P., Ferrara, J. D., Sadler, J. E., & Tulinsky, A. J. (1993). Biological Chemistry, 268, 17651–17654.

    CAS  Google Scholar 

  7. Eva, B., Josep, L. A., Gunter, R., Wim, L., & Ciara, K. O. (2005). Analytical Chemistry, 77, 4774–4784.

    Article  Google Scholar 

  8. Li, J., Fu, H. E., Wu, L. J., Zheng, A. X., Chen, G. N., & Yang, H. H. (2012). Analytical Chemistry, 84, 5309–5315.

    Article  CAS  Google Scholar 

  9. Tang, L. H., Liu, Y., Ali, M. M., Kang, D. K., Zhao, W. J., & Li, J. H. (2012). Analytical Chemistry, 84, 4711–4717.

    Article  CAS  Google Scholar 

  10. Shimron, S., Wang, F. A., Orbach, R., & Willner, I. (2012). Analytical Chemistry, 84, 1042–1048.

    Article  CAS  Google Scholar 

  11. Zhang, Y. W., & Sun, X. P. (2011). Chemical Communications, 47, 3927–3929.

    Article  CAS  Google Scholar 

  12. Xue, L. Y., Zhou, X. M., & Xing, D. (2012). Analytical Chemistry, 84, 3507–3513.

    Article  CAS  Google Scholar 

  13. Zheng, A. X., Wang, J. R., Li, J., Song, X. R., Chen, G. N., & Yang, H. H. (2012). Chemical Communications, 48, 374–376.

    Article  CAS  Google Scholar 

  14. Hu, J., Zheng, P. C., Jiang, J. H., Shen, G. L., Yu, R. Q., & Liu, G. K. (2009). Analytical Chemistry, 81, 87–93.

    Article  CAS  Google Scholar 

  15. Zhao, Q., Li, X. F., Shao, Y. H., & Chris, L. X. (2008). Analytical Chemistry, 80, 7586–7593.

    Article  CAS  Google Scholar 

  16. Zhang, X. R., Qi, B. P., Li, Y., & Zhang, S. S. (2009). Biosensors and Bioelectronics, 25, 259–262.

    Article  CAS  Google Scholar 

  17. Chen, J. H., Zhang, J., Li, J., Yang, H. H., Fu, F. F., & Chen, G. N. (2010). Biosensors and Bioelectronics, 25, 996–1000.

    Article  CAS  Google Scholar 

  18. Yuan, Y. L., Yuan, R., Chai, Y. Q., Zhuo, Y., Ye, X. Y., Gan, X. X., & Bai, L. J. (2012). Chemical Communications, 48, 4621–4623.

    Article  CAS  Google Scholar 

  19. Xiao, P., Garcia, B. B., Guo, Q., Liu, D. W., & Cao, G. Z. (2007). Electrochemistry Communications, 9, 2441–2447.

    Article  CAS  Google Scholar 

  20. Harrison, B. S., & Atala, A. (2007). Biomaterials, 28, 344–353.

    Article  CAS  Google Scholar 

  21. Lu, Y. S., Yang, M. H., Qu, F. L., Shen, G. L., & Yu, R. Q. (2007). Bioelectrochemistry, 71, 211–216.

    Article  CAS  Google Scholar 

  22. Deng, C. Y., Chen, J. H., Nie, Z., Wang, M. D., Chu, X. C., Chen, X. L., Xiao, X. L., Lei, C. Y., & Yao, S. Z. (2009). Analytical Chemistry, 81, 739–745.

    Article  CAS  Google Scholar 

  23. Ding, C. F., Ge, Y., & Lin, J. M. (2010). Biosensors and Bioelectronics, 25, 1290–1294.

    Article  CAS  Google Scholar 

  24. Du, Y., Chen, C. G., Li, B. L., Zhou, M., Wang, E. K., & Dong, S. J. (2010). Biosensors and Bioelectronics, 25, 1902–1907.

    Article  CAS  Google Scholar 

  25. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Science, 306, 666–669.

    Article  CAS  Google Scholar 

  26. Li, L. L., Liu, K. P., Yang, G. H., Wang, C. M., Zhang, J. R., & Zhu, J. J. (2011). Advanced Functional Materials, 21, 869–878.

    Article  CAS  Google Scholar 

  27. Zeng, Q., Cheng, J. S., Tang, L. H., Liu, X. F., Liu, Y. Z., Li, J. H., & Jiang, J. H. (2010). Advanced Functional Materials, 20, 3366–3372.

    Article  CAS  Google Scholar 

  28. Dong, C., Shi, Y. M., Huang, W., Chen, P., & Li, L. J. (2010). Advanced Materials, 22, 1649–1653.

    Article  CAS  Google Scholar 

  29. Jiang, L. P., Yuan, R., Chai, Y. Q., Yuan, Y. L., Bai, L. J., & Wang, Y. (2012). Analyst, 137, 2415–2420.

    Article  CAS  Google Scholar 

  30. Yang, M. H., Yang, Y. H., Qu, F. L., Lu, Y. S., Shen, G. L., & Yu, R. Q. (2006). Analytica Chimica Acta, 571, 211–217.

    Article  CAS  Google Scholar 

  31. Cao, L. Y., Liu, Y. L., Zhang, B. H., & Lu, L. H. (2010). Applied Materials & Interfaces, 2, 2339–2346.

    Article  CAS  Google Scholar 

  32. Yuan, Y. L., Gou, X. X., Yuan, R., Chai, Y. Q., Zhuo, Y., Mao, L., & Gan, X. X. (2012). Biosensors and Bioelectronics, 26, 4236–4240.

    Article  Google Scholar 

  33. Jin, G. X., Lu, L. J., Gao, X. Y., Li, M. J., Qiu, B., Lin, Z. Y., Yang, H. H., & Chen, G. N. (2013). Electrochimica Acta, 89, 13–17.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Outstanding Youth Foundation of Yibin University (2009Q22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, C., Xu, Z., Sun, T. et al. Sensitive Electrochemical Aptasensor for Thrombin Detection Based on Graphene Served as Platform and Graphene Oxide as Enhancer. Appl Biochem Biotechnol 172, 1018–1026 (2014). https://doi.org/10.1007/s12010-013-0588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0588-1

Keywords

Navigation