Skip to main content

Advertisement

Log in

Investigation of Growth Conditions for the Expansion of Porcine Mesenchymal Stem Cells on Microcarriers in Stirred Cultures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The extensive use of mesenchymal stem cells (MCS) in tissue engineering and cell therapy increases the necessity to improve their expansion. Among these, porcine MCS are valuable models for tissue engineering and are classically expanded in static T-flasks. In this work, different processes of stirred cultures were evaluated and compared. First, the effect of glucose, glutamine, antioxidant, and growth factors concentrations on porcine MSC expansion were analyzed in a suitable medium by performing kinetic studies. Results showed that a lower glucose concentration (5.5 mM) enabled to increase maximal cell concentration by 40 % compared with a higher one (25 mM), while addition of 2 to 6 mM of glutamine increased maximal cell concentration by more than 25 % compared with no glutamine supplementation. Moreover, supplementation with 1 μM thioctic acid increased maximal cell concentration by 40 % compared with no supplementation. Using this adapted medium, microcarriers cultures were performed and compared with T-flasks expansion. Porcine MSC were shown to be able to proliferate on the five types of microcarriers tested. Moreover, cultures on Cytodex 1, Cytopore 2, and Cultispher G exhibited a MSC growth rate more than 40 % higher compared with expansion in T-flasks, while MSC metabolism was similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jorgensen, C., Gordeladze, J., & Noël, D. (2004). Current Opinion in Biotechnology, 15, 406–410.

    Article  CAS  Google Scholar 

  2. Caplan, A. I., & Dennis, J. E. (2006). Journal of Cellular Biochemistry, 98, 1076–1084.

    Article  CAS  Google Scholar 

  3. Kolf, C. M., Cho, E., & Tuan, R. S. (2007). Arthritis Research and Therapy, 9, 204.

    Article  Google Scholar 

  4. Comite, P., Cobianchi, L., Avanzini, M. A., Zonta, S., Mantelli, M., Achille, V., De Martino, M., Cansolino, L., Ferrari, C., Alessiani, M., Maccario, R., Gandolfo, G. M., Dionigi, P., Locatelli, F., & Bernardo, M. E. (2010). Transplant, P 42, 1341–1343.

    Article  Google Scholar 

  5. Vacanti, V., Kong, E., Suzuki, G., Sato, K., Canty, J. M., & Lee, T. (2005). Journal of Cellular Physiology, 205, 194–201.

    Article  CAS  Google Scholar 

  6. Van der Spoel, T. I. G., Jansen of Lorkeers, S. J., Agostoni, P., van Belle, E., Gyöngyösi, M., Sluijter, J. P. G., Cramer, M. J., Doevendans, P. A., Steven, A. J., & Chamuleau, S. A. J. (2011). Cardiovascular Research, 91, 649–658.

    Article  Google Scholar 

  7. Chung, R., Foster, B. K., & Xian, C. J. (2011). Stem Cells International. doi:10.4061/2011/570125.

    Google Scholar 

  8. Zheng, Y., Liu, Y., Zhang, C. M., Zhang, H. Y., Li, W. H., Shi, S., Le, A. D., & Wang, S. L. (2009). Journal of Dental Research, 88, 249–254.

    Article  CAS  Google Scholar 

  9. Bosch, P., Pratt, S. L., & Stice, S. L. (2006). Biology of Reproduction, 74, 46–57.

    Article  CAS  Google Scholar 

  10. Ringe, J., Kaps, C., Schmitt, B., Büscher, K., Bartel, J., Smolian, H., Schultz, O., Burmester, G. R., Häupl, T., & Sittinger, M. (2002). Cell and Tissue Research, 307, 312–327.

    Article  Google Scholar 

  11. Zou, X., Li, H., Chen, L., Baatrup, A., Bünger, C., & Lind, M. (2004). Biomaterials, 25, 5375–5385.

    Article  CAS  Google Scholar 

  12. Jin, Y., Kato, T., Furu, M., Nasu, A., Kajita, Y., Mitsui, H., Ueda, M., Aoyama, T., Nakayama, T., Nakamura, T., & Toguchida, J. (2007). Biochemical and Biophysical Research Communications, 391, 1471–1476.

    Article  Google Scholar 

  13. Frauenschuh, S., Reichmann, E., Ibold, Y., Goetz, P. M., Sittinger, M., & Ringe, J. (2007). Biotechnology Progress, 23, 187–193.

    Article  CAS  Google Scholar 

  14. Mahajan, A., & Stahl, C. H. (2009). Journal of Nutritional Biochemistry, 20, 512–520.

    Article  CAS  Google Scholar 

  15. Sotiropoulou, P. A., Perez, S. A., Salagianni, M., Baxevanis, C. N., & Papamichail, M. (2006). Stem Cells, 24, 462–471.

    Article  Google Scholar 

  16. Schop, D., Janssen, F. W., Van Rijn, L. D. S., Fernandes, H., Bloem, R. M., De Bruijn, J. D., & Van Dijkhuizen-Radersma, R. (2009). Tissue Engineering. Part A, 15, 1877–1886.

    Article  CAS  Google Scholar 

  17. Bruder, S. P., Jaiswal, N., & Haynesworth, S. E. (1997). Journal of Cellular Biochemistry, 64, 278–294.

    Article  CAS  Google Scholar 

  18. Sart, S., Schneider, Y. J., & Agathos, S. N. (2009). Journal of Biotechnology, 139, 291–299.

    Article  CAS  Google Scholar 

  19. Deorosan, B., & Nauman, E. A. (2011). Stem Cells International. doi:10.4061/2011/429187.

    Google Scholar 

  20. Zhu, W., Chen, J., Cong, X., Hu, S., & Chen, X. (2006). Stem Cells, 24, 416–425.

    Article  Google Scholar 

  21. Li, Y. M., Schilling, T., Benisch, P., Zeck, S., Meissner-Weigl, J., Schneider, D., Limbert, C., Seufert, J., Kassem, M., Schütze, N., Jakob, F., & Ebert, R. (2007). Biochemical and Biophysical Research Communications, 363, 209–215.

    Article  CAS  Google Scholar 

  22. Jung, M. R., Min, Y. L., Seung, P. Y., & Ho, J. H. (2010). Journal of Cellular Physiology, 224, 59–70.

    Google Scholar 

  23. Eibes, G., dos Santos, F., Andrade, P. Z., Boura, J. S., Abecasis, M. M. A., da Silva, C. L., & Cabral, J. M. S. (2010). Journal of Biotechnology, 146, 194–197.

    Article  CAS  Google Scholar 

  24. Dos Santos, F., Andrade, P. Z., Boura, J. S., Abecasis, M. M., Da Silva, C. L., & Cabral, J. M. S. (2010). Journal of Cellular Physiology, 223, 27–35.

    Google Scholar 

  25. Ebert, R., Ulmer, M., Zeck, S., Meissner-Weigl, J., Schneider, D., Stopper, H., Schupp, N., Kassem, M., & Jakob, F. (2006). Stem Cells, 24, 1226–1235.

    Article  CAS  Google Scholar 

  26. Choi, K. M., Seo, Y. K., Yoon, H. H., Song, K. Y., Kwon, S. Y., Lee, H. S., & Park, J. K. (2008). Journal of Bioscience and Bioengineering, 105, 586–594.

    Article  CAS  Google Scholar 

  27. Tsutsumi, S., Shimazu, A., Miyazaki, K., Pan, H., Koike, C., Yoshida, E., Takagishi, K., & Kato, Y. (2001). Biochemical and Biophysical Research Communications, 288, 413–419.

    Article  CAS  Google Scholar 

  28. Bianchi, G., Banfi, A., Mastrogiacomo, M., Notaro, R., Luzzatto, L., Cancedda, R., & Quarto, R. (2003). Experimental Cell Research, 287, 98–105.

    Article  CAS  Google Scholar 

  29. Ahn, H. J., Lee, W. J., Kwack, K., & Kwon, Y. D. (2009). FEBS Letters, 583, 2922–2926.

    Article  CAS  Google Scholar 

  30. Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., Fiaccavento, R., Carotenuto, F., De Vito, P., Baldini, P. M., Prat, M., & Di Nardo, P. (2006). Stem Cells, 24, 23–33.

    Article  CAS  Google Scholar 

  31. Deuse, T., Peter, C., Fedak, P. W. M., Doyle, T., Reichenspurner, H., Zimmermann, W. H., Eschenhagen, T., Stein, W., Wu, J. C., Robbins, R. C., & Schrepfer, S. (2009). Circulation, 120, S247–S254.

    Article  CAS  Google Scholar 

  32. van Wezel, A. L. (1976). Developments in Biological Standardization, 37, 143–147.

    Google Scholar 

  33. Tharmalingam, T., Sunley, K., Spearman, M., & Butler, M. (2011). Molecular Biotechnology, 49, 263–276.

    Article  CAS  Google Scholar 

  34. Alfred, R., Radford, J., Fan, J., Boon, K., Krawetz, R., Rancourt, D., & Kallos, M. S. (2011). Biotechnology Progress, 27, 811–823.

    Article  CAS  Google Scholar 

  35. Chen, A. K.-L., Chen, X., Choo, A. B. H., Reuveny, S., & Oh, S. K. W. (2011). Stem Cell Research, 7, 97–111.

    Article  CAS  Google Scholar 

  36. Ferrari, C., Balandras, F., Guedon, E., Olmos, E., Chevalot, I., & Marc, A. (2012). Biotechnology Progress, 28, 780–787.

    Article  CAS  Google Scholar 

  37. Viebahn, C. S., Tirnitz-Parker, J. E. E., Olynyk, J. K., & Yeoh, G. C. T. (2006). European Journal of Cell Biology, 85, 1265–1274.

    Article  CAS  Google Scholar 

  38. Brinkmann, M., Lütkemeyer, D., Gudermann, F., & Lehmann, J. (2002). Cytotechnology, 38, 119–127.

    Article  CAS  Google Scholar 

  39. Petiot, E., Fournier, F., Geny, C., Pinton, H., & Marc, A. (2010). Applied Biochemistry and Biotechnology, 160, 1600–1615.

    Article  CAS  Google Scholar 

  40. Hewitt, C. J., Lee, K., Nienow, A. W., Thomas, R. J., Smith, M., & Thomas, C. R. (2011). Biotechnology Letters, 33, 2325–2335.

    Article  CAS  Google Scholar 

  41. Javazon, E. H., Colter, D. C., Schwarz, E. J., & Prockop, D. J. (2001). Stem Cells, 19, 219–225.

    Article  CAS  Google Scholar 

  42. Stolzing, A., Coleman, N., & Scutt, A. (2006). Rejuvenation Research, 9, 31–35.

    Article  CAS  Google Scholar 

  43. Weil, B. R., Abarbanell, A. M., Herrmann, J. L., Wang, Y., & Meldrum, D. R. (2009). American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 296, R1735–R1743.

    Article  CAS  Google Scholar 

  44. Chen, C. T., Hsu, S. H., & Wei, Y. H. (2010). Biochimica et Biophysica Acta, 1800, 257–263.

    Article  CAS  Google Scholar 

  45. Ivanovic, Z. (2009). Journal of Cellular Physiology, 219, 271–275.

    Article  CAS  Google Scholar 

  46. Baetz, A. L., Hubbert, W. T., & Graham, C. K. (1975). Journal of Reproduction and Fertility, 44, 437–444.

    Article  CAS  Google Scholar 

  47. Safaralizadeh, R., Kardar, G. A., Pourpak, Z., Moin, M., Zare, A., & Teimourian, S. (2005). Nutrition Journal, 4, 32. doi:10.1186/1475-2891-4-32.

    Article  CAS  Google Scholar 

  48. Inui, K., Oreffo, R. O. C., & Triffitt, J. T. (1997). Cell Biology International, 21, 419–425.

    Article  CAS  Google Scholar 

  49. Petersen Shay, K., Moreau, R. F., Smith, E. J., & Hagen, T. M. (2008). IUBMB Life, 60, 362–377.

    Article  Google Scholar 

  50. Shay, K. P., Moreau, R. F., Smith, E. J., Smith, A. R., & Hagen, T. M. (2009). Biochimica et Biophysica Acta, 1790, 1149–1160.

    Article  CAS  Google Scholar 

  51. Gonzalez-Perez, O., & Gonzalez-Castaneda, R. E. (2006). Nutrition Research, 26, 1–5.

    Article  CAS  Google Scholar 

  52. Kim, A. H., Khursigara, G., Sun, X., Franke, T. F., & Chao, M. V. (2001). Molecular and Cellular Biology, 21, 893–901.

    Article  CAS  Google Scholar 

  53. Koriyama, Y., Nakayama, Y., Matsugo, S., & Kato, S. (2013). Brain Research, 1499, 145–157.

    Article  CAS  Google Scholar 

  54. Yu, Y., Li, K., Bao, C., Liu, T., Jin, Y., Ren, H., & Yun, W. (2009). Applied Biochemistry and Biotechnology, 159, 110–118.

    Article  CAS  Google Scholar 

  55. Schop, D., Van Dijkhuizen-Radersma, R., Borgart, E., Janssen, F. W., Rozemuller, H., Prins, H. J., & De Bruijn, J. D. (2010). Journal of Tissue Engineering and Regenerative Medicine, 4, 131–140.

    Article  CAS  Google Scholar 

  56. Yang, Y., Rossi, F. M. V., & Putnins, E. E. (2007). Biomaterials, 28, 3110–3120.

    Article  CAS  Google Scholar 

  57. Boo, L., Selvaratnam, L., Tai, C. C., Ahmad, T. S., & Kamarul, T. (2011). Journal of Materials Science: Materials in Medicine, 22, 1343–1356.

    CAS  Google Scholar 

  58. Schop, D., Janssen, F. W., Borgart, E., de Bruijn, J. D., & van Dijkhuizen-Radersma, R. (2008). Journal of Tissue Engineering and Regenerative Medicine, 2, 126–135.

    Article  CAS  Google Scholar 

  59. Han, B. S., Shen, B. Y., Zhang, R., Wang, Z. H., Du, Z. Y., Cheng, D. F., Shi, M. M., Li, H. W., & Peng, C. H. (2009). Journal of Clinical Rehabilitative Tissue Engineering Research, 13, 1996–2000.

    CAS  Google Scholar 

  60. Sun, L.-Y., Hsieh, D.-K., Syu, W.-S., Li, Y.-S., Chiu, H.-T., & Chiou, T.-W. (2010). Cell Proliferation, 43, 445–456.

    Article  CAS  Google Scholar 

  61. Vacanti, N. M., & Metallo, C. M. (2013). Biochimica et Biophysica Acta, 1830, 2361–2369.

    Article  CAS  Google Scholar 

  62. Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., & Stephanopoulos, G. (2012). Nature, 481, 380–384.

    CAS  Google Scholar 

  63. Zwerschke, W., Mazurek, S., Stöckl, P., Hütter, E., Eigenbrodt, E., & Jansen-Dürr, P. (2003). Biochemical Journal, 376, 403–411.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was supported by the French National Research Agency (ANR). C. Ferrari received a grant from the French Ministry of Research and National Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Guedon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, C., Olmos, E., Balandras, F. et al. Investigation of Growth Conditions for the Expansion of Porcine Mesenchymal Stem Cells on Microcarriers in Stirred Cultures. Appl Biochem Biotechnol 172, 1004–1017 (2014). https://doi.org/10.1007/s12010-013-0586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0586-3

Keywords

Navigation