Skip to main content

Small Interfering RNA (siRNA)-Mediated Knockdown of Myostatin Influences the Expression of Myogenic Regulatory Factors in Caprine Foetal Myoblasts


Myostatin (MSTN) acts as a negative regulator of skeletal muscle development. Naturally occurring inactivating mutations in the coding region and knockout as well as knockdown of MSTN result in an increase in the muscle mass. However, the effect of MSTN knockdown on the expression of myogenic regulatory factors (MRFs) has not been studied in farm animals including goats. In the present study, using different synthetic siRNAs (n = 3), we demonstrated as high as 69 (p < 0.01) and 89 % downregulation of MSTN mRNA and protein in the primary caprine foetal myoblast cells. Further, we also examined the effect of MSTN knockdown on the transcripts of MRFs including MyoD, Myf5 and MYOG. The expression of Myf5 remained unaffected (p = 0.60); however, MSTN downregulation caused a significant (p < 0.05) decrease and increase of MYOG and MyoD expression, respectively. Assessment of OAS1 expression confirmed the absence of any siRNA-elicited interferon response. Our results demonstrate that the downregulation of MSTN expression was accompanied by differential expressions of MRFs without any adverse interferon response. This study also suggests the importance of siRNA-mediated knockdown of MSTN as a potential alternative to increase muscle mass and meat production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Kambadur, R., Sharma, M., Smith, T. P., & Bass, J. J. (1997). Genome Research, 7, 910–916.

    CAS  Google Scholar 

  2. 2.

    McPherron, A. C., & Lee, S. J. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 12457–12461.

    CAS  Article  Google Scholar 

  3. 3.

    McPherron, A. C., Lawler, A. M., & Lee, S. J. (1997). Nature, 387, 83–90.

    CAS  Article  Google Scholar 

  4. 4.

    McPherron, A. C., & Lee, S. J. (2002). Journal of Clinical Investigation, 109, 595–601.

    CAS  Article  Google Scholar 

  5. 5.

    Clop, A., Marcq, F., Takeda, H., Pirottin, D., Tordoir, X., Bibe, B., Bouix, J., Caiment, F., Elsen, J. M., Eychenne, F., Larzul, C., Laville, E., Meish, F., Milenkovic, D., Tobin, J., Charlier, C., & Georges, M. (2006). Nature Genetics, 38, 813–818.

    CAS  Article  Google Scholar 

  6. 6.

    Schuelke, M., Wagner, K. R., Stolz, L. E., Hubner, C., Riebel, T., Komen, W., Braun, T., Tobin, J. F., & Lee, S. J. (2007). New England Journal of Medicine, 350, 2682–2688.

    Article  Google Scholar 

  7. 7.

    Shelton, G. D., & Engvall, E. (2007). Neuromuscular Disorders, 17, 721–722.

    Article  Google Scholar 

  8. 8.

    Hu, S., Chen, C., Sheng, J., Sun, Y., Cao, X., & Qiao, J. (2010). Journal of Biomedicine and Biotechnology. doi:10.1155/2010/862591.

    Google Scholar 

  9. 9.

    Sato, F., Kurokawa, M., Yamauchi, N., & Hattori, M. (2006). American Journal of Physiology, 291, C538–C545.

    CAS  Article  Google Scholar 

  10. 10.

    Tripathi, A. K., Aparnathi, M. K., Vyavahare, S. S., Ramani, U. V., Rank, D. N., & Joshi, C. G. (2012). Journal of Biotechnology, 160, 140–145.

    CAS  Article  Google Scholar 

  11. 11.

    Zhang, L., Yang, X., An, X., & Chen, Y. (2007). Animal, 1(10), 1401–1408.

    CAS  Google Scholar 

  12. 12.

    Stewart, C. K., Li, J., & Golovan, S. P. (2008). Biochemical and Biophysical Research Communications, 370(1), 113–117.

    CAS  Article  Google Scholar 

  13. 13.

    Jain, H., Singh, S., Kadam, M., & Sarkhel, B. C. (2010). Journal of Biotechnology, 145, 99–102.

    CAS  Article  Google Scholar 

  14. 14.

    Tripathi, A. K., Ramani, U. V., Patel, A. K., Rank, D. N., & Joshi, C. G. (2013). Applied Biochemistry and Biotechnology, 169, 688–694.

    CAS  Article  Google Scholar 

  15. 15.

    Singh, S. P., Kumar, R., Kumari, P., & Mitra, A. (2013). In Vitro Cellular & Developmental Biology - Animal. doi:10.1007/s11626-013-9642-0.

    Google Scholar 

  16. 16.

    Kassar-Duchossoy, L., Gayraud-Morel, B., Gomes, D., Rocancourt, D., Buckingham, M., Shinin, V., & Tajbakhsh, S. (2004). Nature, 431, 466–471.

    CAS  Article  Google Scholar 

  17. 17.

    Megeney, L. A., & Rudnicki, M. A. (1995). Biochemistry and Cell Biology, 73, 723–732.

    CAS  Article  Google Scholar 

  18. 18.

    Lindon, C., Montarras, D., & Pinset, C. (1998). Journal of Cell Biology, 140, 111–118.

    CAS  Article  Google Scholar 

  19. 19.

    Oldham, J. M., Martyn, J. A., Sharma, M., Jeanplong, F., Kambadur, R., & Bass, J. J. (2001). American Journal of Physiology, 280, R1488–R1493.

    CAS  Google Scholar 

  20. 20.

    Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., & Kambadur, R. (2002). Journal of Biological Chemistry, 277, 49831–49840.

    CAS  Article  Google Scholar 

  21. 21.

    Spiller, M. P., Kambadur, R., Jeanplong, F., Thomas, M., Martyn, J. K., Bass, J. J., & Sharma, M. (2002). Molecular and Cellular Biology, 22, 7066–7082.

    CAS  Article  Google Scholar 

  22. 22.

    Joulia, D., Bernardi, H., Garandel, V., Rabenoelina, F., Vernus, B., & Cabello, G. (2003). Experimental Cell Research, 286(2), 263–275.

    CAS  Article  Google Scholar 

  23. 23.

    Liu, C., Li, W., Zhang, X., Zhang, N., He, S., Huang, J., Ge, Y., & Liu, M. (2012). Biochemical and Biophysical Research Communications, 422, 381–386.

    CAS  Article  Google Scholar 

  24. 24.

    Yamanouchi, K., Hosoyana, T., Murokami, Y., & Nishiharam, M. (2007). Journal of Reproduction and Development, 53, 51–58.

    CAS  Article  Google Scholar 

  25. 25.

    Livak, K. J., & Schmittgen, T. D. (2001). Methods, 25, 402–408.

    CAS  Article  Google Scholar 

  26. 26.

    Fiems, L. O. (2012). Animal, 2, 472–506.

    Article  Google Scholar 

  27. 27.

    Bartlett, D. W., & Davis, M. E. (2006). Nucleic Acids Research, 34, 322–333.

    CAS  Article  Google Scholar 

  28. 28.

    Patzel, V., Rutz, S., Dietrich, I., Koberle, C., Scheffold, A., & Kaufmann, S. H. (2005). Nature Biotechnology, 23, 1440–1444.

    CAS  Article  Google Scholar 

  29. 29.

    Rana, T. M. (2007). Nature Reviews, 8, 23–36.

    CAS  Article  Google Scholar 

  30. 30.

    Tapscott, S. J. (2005). Development, 132, 2685–2695.

    CAS  Article  Google Scholar 

  31. 31.

    Pownall, M. E., Gustafsson, M. K., & Emerson, C. P. (2002). Annual Review of Cell and Developmental Biology, 18, 747–783.

    CAS  Article  Google Scholar 

  32. 32.

    Hasty, P., Bradley, A., & Morris, J. H. (1993). Nature, 364, 501–506.

    CAS  Article  Google Scholar 

  33. 33.

    Perry, R. L. S., & Rudnicki, M. A. (2000). Frontiers in Bioscience, 5, d750–d767.

    CAS  Article  Google Scholar 

  34. 34.

    Ustanina, S., Carvajal, J., Rigby, P., & Braun, T. (2007). Stem Cells, 25, 2006–2016.

    CAS  Article  Google Scholar 

  35. 35.

    Yan-Kun, L., Juan, L., Rong, D., & Ning, L. (2010). Progress in Biochemistry and Biophysics, 37(4), 451–459.

    Article  Google Scholar 

  36. 36.

    Amali, A. A., Lin, C. J., Chen, Y. H., Wang, W. L., Gong, H. Y., Lee, C. Y., Ko, Y. L., Lu, J. K., Her, G. M., Chen, T. T., & Wu, J. L. (2004). Developmental Dynamics, 229, 847–856.

    CAS  Article  Google Scholar 

  37. 37.

    Lu, J., Wei, C., Zhang, X., Xu, L., Zhang, S., Liu, J., Cao, J., Zhao, F., Zhang, L., Li, B., & Du, L. (2013). Molecular Biology Reports, 40, 4101–4108.

    CAS  Article  Google Scholar 

  38. 38.

    Lin, X., Yang, X., Li, Q., Ma, Y., Cui, S., He, D., Lin, X., Schwartz, R. J., & Chang, J. (2012). Molecular and Cellular Biology, 32, 297–308.

    CAS  Article  Google Scholar 

  39. 39.

    Singh, N. K., Singh, S., Jain, S. K., & Sarkhel, B. C. (2012). Animal Biotechnology, 23, 174–183.

    CAS  Article  Google Scholar 

  40. 40.

    Hornung, V., Guenthner-Biller, M., Bourquin, C., Ablasser, A., Schlee, M., Uematsu, S., Noronha, A., Manoharan, M., Akira, S., Fougerolles, A., Endres, S., & Hartmann, G. (2005). Nature Medicine, 11(3), 263–270.

    CAS  Article  Google Scholar 

  41. 41.

    Judge, A. D., Sood, V., Shaw, J. R., Fang, D., McClintock, K., & MacLachlan, I. (2005). Nature Biotechnology, 23(4), 457–462.

    CAS  Article  Google Scholar 

  42. 42.

    Sioud, M. (2005). Journal of Molecular Biology, 348(5), 1079–1090.

    CAS  Article  Google Scholar 

Download references


This work was carried out under the project supported by the Competitive Research Grant (C2132) under the National Agriculture Innovation Project (NAIP, Component 4), Indian Council of Agricultural Research (ICAR), New Delhi. Financial help in the form of Institute Scholarship to SPS during his Ph.D. study is also acknowledged. The authors are grateful to Dr. Reema Gupta, Research Associate, and Mr. Vishakh Walia, Senior Research Fellow, Genome Analysis Lab, AG Division, IVRI, Izatnagar, Bareilly, India, for critical reading of the manuscript.

Author information



Corresponding author

Correspondence to Abhijit Mitra.

Additional information

Rohit Kumar, Satyendra Pal Singh and Priya Kumari contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Secondary structures of antisense strands of siRNAs against MSTN. (JPEG 1 kb)

High resolution image (TIFF 147 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, R., Singh, S.P., Kumari, P. et al. Small Interfering RNA (siRNA)-Mediated Knockdown of Myostatin Influences the Expression of Myogenic Regulatory Factors in Caprine Foetal Myoblasts. Appl Biochem Biotechnol 172, 1714–1724 (2014).

Download citation


  • Myostatin
  • Knockdown
  • Caprine foetal myoblasts
  • Myogenic regulatory factors
  • Interferon response