Applied Biochemistry and Biotechnology

, Volume 172, Issue 3, pp 1194–1214 | Cite as

Carbohydrate Hydrogels with Stabilized Phage Particles for Bacterial Biosensing: Bacterium Diffusion Studies

  • Victor M. BalcãoEmail author
  • Sérgio V. P. Barreira
  • Thiago M. Nunes
  • Marco V. Chaud
  • Matthieu Tubino
  • Marta M. D. C. Vila


Bacteriophage particles have been reported as potentially useful in the development of diagnosis tools for pathogenic bacteria as they specifically recognize and lyse bacterial isolates thus confirming the presence of viable cells. One of the most representative microorganisms associated with health care services is the bacterium Pseudomonas aeruginosa, which alone is responsible for nearly 15 % of all nosocomial infections. In this context, structural and functional stabilization of phage particles within biopolymeric hydrogels, aiming at producing cheap (chromogenic) bacterial biosensing devices, has been the goal of a previous research effort. For this, a detailed knowledge of the bacterial diffusion profile into the hydrogel core, where the phage particles lie, is of utmost importance. In the present research effort, the bacterial diffusion process into the biopolymeric hydrogel core was mathematically described and the theoretical simulations duly compared with experimental results, allowing determination of the effective diffusion coefficients of P. aeruginosa in the agar and calcium alginate hydrogels tested.


Structurally/functionally stabilized bacteriophage Bacterial biosensing Bacterial diffusion Mathematical modeling Carbohydrate hydrogels 



Financial support to Victor M. Balcão, via an Invited Research Scientist fellowship (FAPESP Ref. No. 2011/51077-8) by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil), is hereby gratefully acknowledged.


  1. 1.
    Nicolle, L. E. (2002). In L. Breslow (Ed.), Encyclopedia of public health, vol 3 (pp. 828–830). New York: Macmillan Reference.Google Scholar
  2. 2.
    Davey, P., Brown, E., Fenelon, L., Finch, R., Gould, I., Holmes, A., et al. (2006). Emerging Infectious Diseases, 12, 211–216.CrossRefGoogle Scholar
  3. 3.
    Klevens, R. M., Edwards, J. R., Richards, C. L., Jr., Horan, T. C., Gaynes, R. P., Pollock, D. A., et al. (2007). Public Health Reports, 122, 160–166.Google Scholar
  4. 4.
    Flickinger, S. T., Copeland, M. F., Downes, E. M., Braasch, A. T., Tuson, H. H., Eun, Y.-J., et al. (2011). Journal of the American Chemical Society, 133, 5966–5975.CrossRefGoogle Scholar
  5. 5.
    Balcão, V. M., Moreira, A. R., Moutinho, C. G., Chaud, M. V., Tubino, M., & Vila, M. M. (2013). Enzyme and Microbial Technology, 53, 55–69.CrossRefGoogle Scholar
  6. 6.
    Giamarellou, H. (2002). Journal of Antimicrobial Chemotherapy, 49, 229–233.CrossRefGoogle Scholar
  7. 7.
    Kerr, K. G., & Snelling, A. M. (2009). Journal of Hospital Infection, 73, 338–344.CrossRefGoogle Scholar
  8. 8.
    Caselli, D., Cesaro, S., Ziino, O., Zanazzo, G., Manicone, R., Livadiotti, S., et al. (2010). Haematologica, 95, 1612–1615.CrossRefGoogle Scholar
  9. 9.
    Neves, M. T., Lorenzo, M. E. P., Almeida, R. A. M. B., & Fortaleza, C. M. C. B. (2010). Revista da Sociedade Brasileira de Medicina Tropical, 43, 629–632.CrossRefGoogle Scholar
  10. 10.
    Duffy, K. J., Cummings, P. T., & Ford, R. M. (1995). Biophysical Journal, 68, 800–806.CrossRefGoogle Scholar
  11. 11.
    Kim, Y.-C. (1996). Korean Journal of Chemical Engineering, 13, 282–287.CrossRefGoogle Scholar
  12. 12.
    Dockery, J. D., & Keener, J. P. (2001). Bulletin of Mathematical Biology, 63, 95–116.CrossRefGoogle Scholar
  13. 13.
    Du, H., Xu, Z., Shrout, J. D., & Alber, M. (2011). Mathematical Models and Methods Applied Sciences, 21, 939–954.CrossRefGoogle Scholar
  14. 14.
    Omidian, H., & Park, K. (2008). Journal of Drug Delivery Science and Technology, 18, 83–93.Google Scholar
  15. 15.
    Chandra, R., & Rustgi, R. (1998). Progress in Polymer Science, 23, 1273–1335.CrossRefGoogle Scholar
  16. 16.
    Pal, K., Banthia, A. K., & Majumdar, D. K. (2009). Designed Monomers and Polymers, 12, 197–220.CrossRefGoogle Scholar
  17. 17.
    Annabi, N., Nichol, J. W., Zhong, X., Ji, C., Koshy, S., Khademhosseini, A., et al. (2010). Tissue Engineering Part B, 16, 371–383.CrossRefGoogle Scholar
  18. 18.
    Lieleg, O., & Ribbeck, K. (2011). Trends in Cell Biology, 21, 543–551.CrossRefGoogle Scholar
  19. 19.
    Draget, K. I., Moe, S. T., Skjak-Bræk, G., & Smidsrod, O. (2006). In A. M. Stephen, G. O. Phillips, & P. A. Williams (Eds.), Food polysaccharides and their applications (2nd ed., pp. 289–334). New York: Taylor & Francis.Google Scholar
  20. 20.
    Donati, I., & Paoletti, S. (2009). In B. H. A. Rehm (Ed.), Alginates: biology and applications (pp. 1–53). Münster: Springer.CrossRefGoogle Scholar
  21. 21.
    Fahien, R. (1983). Fundamentals of transport phenomena. McGraw-Hill, New York.Google Scholar
  22. 22.
    Vogt, M., Flemming, H.-C., & Veeman, W. S. (2000). Journal of Biotechnology, 77, 137–146.CrossRefGoogle Scholar
  23. 23.
    Currie, J. A. (1960). British Journal of Applied Physics, 11, 318–324.CrossRefGoogle Scholar
  24. 24.
    Nussinovitch, A. (2010). In: Nussinovitch, A (ed) Polymer macro- and micro-gel beads: fundamentals and applications, Ch. 2. Springer, New York. pp. 27–52.Google Scholar
  25. 25.
    Barton, J.W. (1994). Ph.D. thesis, University of Virginia, Charlottesville, VA, USA.Google Scholar
  26. 26.
    Holte, Ø., Tønnesen, H. H., & Karlsen, J. (2006). Pharmazie, 61, 30–34.Google Scholar
  27. 27.
    Sahimi, M., & Jue, V. L. (1989). Physical Review Letters, 62, 629–632.CrossRefGoogle Scholar
  28. 28.
    Malek, K., & Coppens, M. O. (2003). Journal of Chemical Physics, 119, 2801–2811.CrossRefGoogle Scholar
  29. 29.
    Thonemann, P. C., & Evans, C. J. (1976). Journal of General Microbiology, 92, 25–31.CrossRefGoogle Scholar
  30. 30.
    Balcão, V. M., Costa, C. I., Matos, C. M., Moutinho, C. G., Amorim, M., Pintado, M. E., et al. (2013). Food Hydrocolloids, 32, 425–431.CrossRefGoogle Scholar
  31. 31.
    Reyes, S. C., & Iglesia, E. (1991). Journal of Catalysis, 129, 457–472.CrossRefGoogle Scholar
  32. 32.
    Liu, C.-H., Wu, J.-Y., & Chang, J.-S. (2008). Bioresource Technology, 99, 1904–1910.CrossRefGoogle Scholar
  33. 33.
    Burke, M. D., Park, J. O., Srinivasarao, M., & Khan, S. A. (2005). Journal of Controlled Release, 104, 141–153.CrossRefGoogle Scholar
  34. 34.
    Wu, M., Roberts, J. W., Kim, S., Koch, D. L., & DeLisa, M. P. (2006). Applied and Environmental Microbiology, 72, 4987–4994.CrossRefGoogle Scholar
  35. 35.
    Tindall, M. J., Maini, P. K., Porter, S. L., & Armitage, J. P. (2008). Bulletin of Mathematical Biology, 70, 1570–1607.CrossRefGoogle Scholar
  36. 36.
    Banks, D. S., & Fradin, C. (2005). Biophysical Journal, 89, 2960–2971.CrossRefGoogle Scholar
  37. 37.
    Butenko, A. V., Mogilko, E., Amitai, L., Pokroy, B., & Sloutskin, E. (2012). Langmuir, 28, 12941–12947.CrossRefGoogle Scholar
  38. 38.
    Schulz, H. N., & Jørgensen, B. B. (2001). Annual Review of Microbiology, 55, 105–137.CrossRefGoogle Scholar
  39. 39.
    Lieleg, O., Vladescu, I., & Ribbeck, K. (2010). Biophysical Journal, 98, 1782–1789.CrossRefGoogle Scholar
  40. 40.
    Wolfe, A. J., & Berg, H. C. (1989). Proceedings of the National Academy of Sciences of the United States of America, 86, 6973–6977.CrossRefGoogle Scholar
  41. 41.
    Leth, S., Maltoni, S., Simkus, R., Mattiasson, B., Corbisier, P., Klimant, I., et al. (2002). Electroanalysis, 14, 35–42.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Victor M. Balcão
    • 1
    • 2
    • 3
    Email author
  • Sérgio V. P. Barreira
    • 2
  • Thiago M. Nunes
    • 1
  • Marco V. Chaud
    • 1
  • Matthieu Tubino
    • 4
  • Marta M. D. C. Vila
    • 1
  1. 1.Laboratory for the Development and Evaluation of Bioactive SubstancesUniversity of SorocabaSorocabaBrazil
  2. 2.Bioengineering and Biopharmaceutical Chemistry Research GroupUniversity Fernando PessoaPortoPortugal
  3. 3.Institute for Biotechnology and Bioengineering (IBB), Centre for Biological EngineeringUniversity of MinhoBragaPortugal
  4. 4.Institute of ChemistryUniversity of CampinasCampinasBrazil

Personalised recommendations