Skip to main content
Log in

Comparison of Alcoholic Fermentation Performance of the Free and Immobilized Yeast on Water Hyacinth Stem Pieces in Medium with Different Glucose Contents

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Ethanol fermentation with Saccharomyces cerevisiae cells was performed in medium with different glucose concentrations. As the glucose content augmented from 200 to 250 g/L, the growth of the immobilized cells did not change while that of the free cells was reduced. At higher glucose concentration (300, 350, and 400 g/L), the cell proliferation significantly decreased and the residual sugar level sharply augmented for both the immobilized and free yeast. The specific growth rate of the immobilized cells was 27–65 % higher than that of the free cells, and the final ethanol concentration in the immobilized yeast cultures was 9.7–18.5 % higher than that in the free yeast cultures. However, the immobilized yeast demonstrated similar or slightly lower ethanol yield in comparison with the free yeast. High fermentation rate of the immobilized yeast was associated with low unsaturation degree of fatty acids in cellular membrane. Adsorption of S. cerevisiae cells on water hyacinth stem pieces in the nutritional medium decreased the unsaturation degree of membrane lipid and the immobilized yeast always exhibited lower unsaturation degree of membrane lipid than the free yeast in ethanol fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P., & Laopaiboon, P. (2009). Bioresource Technology, 100, 4176–4182.

    Article  CAS  Google Scholar 

  2. Puligundla, P., Smogrovicova, D., Obulam, V. S. R., & Ko, S. (2011). Journal of Industrial Microbiology and Biotechnology, 38, 1133–1144.

    Article  CAS  Google Scholar 

  3. Strehaiano, P., Ramon-Portugal, F., & Taillandier, P. (2006). In A. Querol & G. Fleet (Eds.), Yeasts in food and beverages (pp. 243–284). Berlin: Springer.

    Chapter  Google Scholar 

  4. D'Amore, T., & Stewart, G. G. (1987). Enzyme and Microbial Technology, 9, 322–330.

    Article  Google Scholar 

  5. Holcberg, I. B., & Margalith, P. (1981). European Journal of Applied Microbiology and Biotechnology, 13, 133–140.

    Article  CAS  Google Scholar 

  6. Hilge-Rotmann, B., & Rehm, H. J. (1991). Applied Microbiology and Biotechnology, 34, 502–508.

    Article  CAS  Google Scholar 

  7. Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Food Microbiology, 21, 377–397.

    Article  CAS  Google Scholar 

  8. Chandel, A. K., Narasu, M. L., Chandrasekhar, G., Manikyam, A., & Rao, L. V. (2009). Bioresource Technology, 100, 2404–2410.

    Article  CAS  Google Scholar 

  9. Vucurovic, V., Razmovski, R., & Rebic, M. (2008). Chemical Industry and Chemical Engineering Quarterly, 14, 235–238.

    Article  CAS  Google Scholar 

  10. Yu, J., Zhang, X., & Tan, T. (2007). Journal of Biotechnology, 129, 415–420.

    Article  CAS  Google Scholar 

  11. Tan, L., Zhu, D., Zhou, W., Mi, W., Ma, L., & He, W. (2008). Bioresource Technology, 99, 4460–4466.

    Article  CAS  Google Scholar 

  12. Yu, J., Yue, G., Zhong, J., Zhang, X., & Tan, T. (2010). Renewable Energy, 35, 1130–1134.

    Article  CAS  Google Scholar 

  13. Bai, F. W., & Zhao, X. Q. (2012). In Z. L. Liu (Ed.), Microbial stress tolerance for biofuels: systems biology (pp. 117–135). Berlin: Springer.

    Chapter  Google Scholar 

  14. Ratledge, C., & Evans, C. T. (1989). In A. H. Rose & J. S. Harrison (Eds.), The yeast (pp. 368–446). London: Academic.

    Google Scholar 

  15. Beaven, M. J., Charpentier, C., & Rose, A. H. (1982). Journal of General Microbiology, 128, 1447–1455.

    CAS  Google Scholar 

  16. Sajbidor, J., Ciesarova, Z., & Smogrovicova, D. (1995). Folia Microbiologica, 40, 508–510.

    Article  CAS  Google Scholar 

  17. You, K. M., Rosenfield, C. L., & Knipple, D. C. (2003). Applied and Environmental Microbiology, 69, 1499–1503.

    Article  CAS  Google Scholar 

  18. Liang, L., Zhang, Y., Zhang, L., Zhu, M., Liang, S., & Huang, Y. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 1605–1613.

    Article  CAS  Google Scholar 

  19. Slininger, P. J., Bothast, R. J., Van Cauwenberge, J. E., & Kurtzman, C. P. (1982). Biotechnology and Bioengineering, 24, 371–384.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  21. Beltran, G., Novo, M., Guillamón, J. M., Mas, A., & Rozès, N. (2008). International Journal of Food Microbiology, 121, 169–177.

    Article  CAS  Google Scholar 

  22. Sinigaglia, M., Gardini, M., & Guerzoni, M. E. (1993). Applied Microbiology and Biotechnology, 39, 593–598.

    Article  CAS  Google Scholar 

  23. Lainioti, G. C., Kapolos, J., Koliadima, A., & Karaiskakis, G. (2012). Preparative Biochemistry and Biotechnology, 42, 489–506.

    Article  CAS  Google Scholar 

  24. Ton, N. M. N., Nguyen, M. D., Pham, T. T. H., & Le, V. V. M. (2010). International Food Research Journal, 17, 743–749.

    CAS  Google Scholar 

  25. Iconomou, L., Psarianos, C., & Koutinas, A. (1995). Journal of Fermentation and Bioengineering, 79, 294–296.

    Article  CAS  Google Scholar 

  26. Phisalaphong, M., Budiraharjo, R., Bangrak, P., Mongkolkajit, J., & Limtong, S. (2007). Journal of Bioscience and Bioengineering, 104, 214–217.

    Article  CAS  Google Scholar 

  27. Kosaric, N. (1996). In M. Roehr (Ed.), Biotechnology, volume 6: products of primary metabolism (pp. 121–204). Weinheim: VCH Verlagsgesellschaft mbH.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Vietnam National University, Ho Chi Minh City (Project B2012-20-11TD/HD-KHCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Viet Man Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, V.N., Le, V.V.M. Comparison of Alcoholic Fermentation Performance of the Free and Immobilized Yeast on Water Hyacinth Stem Pieces in Medium with Different Glucose Contents. Appl Biochem Biotechnol 172, 963–972 (2014). https://doi.org/10.1007/s12010-013-0574-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0574-7

Keywords

Navigation