Skip to main content
Log in

An Evaluation of the Proteolytic and Lipolytic Potential of Penicillium spp. Isolated from Traditional Greek Sausages in Submerged Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A number of novel Penicillium strains belonging to Penicillium nalgiovense, Penicillium solitum, Penicillium commune, Penicillium olsonii, and Penicillium oxalicum species, isolated from the surface of traditional Greek sausages, were evaluated for their proteolytic and lipolytic potential in a solid substrate first and next in submerged fermentations, using complex media. Extracellular proteolytic activity was assessed at acid, neutral, and alkaline pH, while the lipolytic activity was assessed using olive oil, the short-chain triacylglycerol tributyrin, and the long-chain triolein, as substrates. The study revealed that although closely related, the tested strains produce enzymes of distinct specificities. P. nalgiovense PNA9 produced the highest alkaline proteolytic activity (13.2 unit (U)/ml) and the highest lipolytic activity with tributyrin (92 U/ml). Comparisons with known sources show that proteases and/or lipases can be secreted effectively by some Penicillia (P. nalgiovense PNA4, PNA7, and PNA9 and P. solitum PSO1), and further investigations on their properties and characteristics would be promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Filtenborg, O., Frisvad, J. C., & Thrane, U. (1996). International Journal of Food Microbiology, 33, 85–102.

    Article  CAS  Google Scholar 

  2. Ludemann, V., Pose, G., Pollio, M. L., & Segura, J. (2004). International Journal of Food Microbiology, 96, 13–18.

    Article  CAS  Google Scholar 

  3. Papagianni, M., Ambrosiadis, J., & Filiousis, G. (2007). Meat Science, 76, 653–657.

    Article  CAS  Google Scholar 

  4. Chahinian, H., Vanot, G., Ibrik, A., Rugani, N., Sarda, L., & Comeau, L. C. (2000). Bioscience, Biotechnology, and Biochemistry, 64, 215–222.

    Article  CAS  Google Scholar 

  5. Dheeman, D. S., Antony-Babou, S., Friaw, J. M., & Henehan, G. T. M. (2011). J. Mol. Catal. B: Enzymatic, 72, 256–262.

    Article  CAS  Google Scholar 

  6. Li, N., & Zong, M. H. (2010). Journal of Molecular Catalysis B: Enzymatic, 66, 43–54.

    Article  Google Scholar 

  7. Gripon, J. C., Rhee, S. H., & Hifmann, T. (1977). Canadian Journal of Biochemistry, 55, 504–506.

    Article  CAS  Google Scholar 

  8. Benito, M. J., Rodriguez, M., Nunez, F., Asensio, M. A., Bermudez, M. E., & Cordoba, J. J. (2002). Applied and Environmental Microbiology, 68, 3532–3536.

    Article  CAS  Google Scholar 

  9. Andersen, S. J. (1995). Antonie Van Leeuwenhoek, 68, 165–171.

    Article  CAS  Google Scholar 

  10. Sǿrensen, D., Ostenfeld Larsen, T., Christofersen, C., & Nielsen, P. H. (1999). Phytochemistry, 51, 1027–1029.

    Article  Google Scholar 

  11. Frisvad, J. C., & Filtenborg, O. (1989). Mycologia, 81, 837–861.

    Article  CAS  Google Scholar 

  12. Wagner, F., Heike Kusserow, H., & Schäfer, W. (2000). FEMS Microbiology Letters, 186, 293–299.

    Article  CAS  Google Scholar 

  13. Kirsch, D. (1935). Lipase production by Penicillium oxalicum and Aspergillus flavus. Botanical Gazette, 97, 321–333.

    Article  Google Scholar 

  14. Haq, I. U., Mukhtar, H., & Umber, H. (2006). Journal of Agriculture and Social Science, 2, 23–25.

    Google Scholar 

  15. Lawrence, R. C., Frayer, T. F., & Reiter, B. (1967). Nature, 213, 1264–1265.

    Article  CAS  Google Scholar 

  16. Sigma-Aldrich (2013) Universal protease activity assay: casein as a substrate. http://www.sigmaaldrich.com/life-science/learning-center/life-science-video/universal-protease.html. Accessed Jul 2013

  17. Reichard, U., Buttner, S., Eifferst, H., Staib, F., & Ruchel, R. (1990). Journal of Medical Microbiology, 33, 243–251.

    Article  CAS  Google Scholar 

  18. Winkler, U. K., & Stuckmann, M. (1979). Journal of Bacteriology, 138, 663–670.

    CAS  Google Scholar 

  19. Abbas, C. A., Groves, S., & Gander, J. E. (1989). Journal of Bacteriology, 171, 5630–5637.

    CAS  Google Scholar 

  20. Romero, F., Garcia, L. A., & Diaz, M. (1998). Resource and Environmental Biotechnology, 2, 93–115.

    CAS  Google Scholar 

  21. Karuna, J., & Ayyanna, C. (1993). Production of semi-alkaline protease enzyme from Aspergillus spp. Proceeedings of the ninth national convention of chemical engineers and international symposium on importance of biotechnology in coming decades. Viskhapatnam, India. pp: 8–11.

  22. Ikasari, L., Ikasari, L., & Mitchell, D. A. (1994). Journal of Microbiology and Biotechnology, 10, 320–324.

    Article  CAS  Google Scholar 

  23. Tan, T., Zhang, M., Xu, J., & Zhang, J. (2004). Process Biochemistry, 39, 1495–1502.

    Article  CAS  Google Scholar 

  24. Ruiz, B., Farres, A., Langley, E., Masso, F., & Sanchez, S. (2001). Lipids, 36, 283–289.

    Article  CAS  Google Scholar 

  25. Stocklein, W., Sztajer, H., Menge, U., & Schmid, R. D. (1993). Biochimica et Biophysica Acta, 1168, 181–189.

    Article  CAS  Google Scholar 

  26. Tang, L. H., Xia, L. M., Min, S., & Guo, H. Y. (2007). Applied Biochemistry and Biotechnology, 142, 194–199.

    Article  CAS  Google Scholar 

  27. Bancerz, R., Ginalska, G., Fiedurek, J., & Gromada, A. (2005). Journal of Industrial Microbiology and Biotechnology, 32, 253–260.

    Article  CAS  Google Scholar 

  28. Mase, T., Matsumiya, Y., & Matsuura, A. (1995). Bioscience, Biotechnology, and Biochemistry, 59, 239–330.

    Google Scholar 

  29. Song, X., Qi, X., Hao, B., & Qu, Y. (2008). Studies of substrate specificities of lipases from different sources. European Journal of Lipid Science and Technology, 110, 1095–1101.

    Article  CAS  Google Scholar 

  30. Hiol, A., Jonzo, M. D., Bruet, D., & Comeau, L. (1999). Enzyme and Microbial Technology, 25, 80–87.

    Article  CAS  Google Scholar 

  31. Gotor-Fernandez, V., Brieva, R., & Gotor, V. J. (2006). Molecular Catalysis B: Enzymatic, 40, 111–120.

    Article  CAS  Google Scholar 

  32. Yang, R. L., Li, N., Li, R., Smith, T. J., & Zong, M. H. (2010). Bioresource Technology, 101, 1–5.

    Article  CAS  Google Scholar 

  33. Maliszewska, I., & Mastalerz, P. (1992). Enzyme and Microbial Technology, 14, 190–193.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Papagianni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papagianni, M. An Evaluation of the Proteolytic and Lipolytic Potential of Penicillium spp. Isolated from Traditional Greek Sausages in Submerged Fermentation. Appl Biochem Biotechnol 172, 767–775 (2014). https://doi.org/10.1007/s12010-013-0570-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0570-y

Keywords

Navigation