Skip to main content

Advertisement

Log in

Microstructural and Potential Dependence Studies of Urease-Immobilized Gold Nanoparticles–Polypyrrole Composite Film for Urea Detection

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Gold nanoparticle–polypyrrole nanocomposite film was electrochemically deposited in a single-step polymerization of pyrrole in the presence of 3-mercaptopropionic acid (MPA)-capped gold nanoparticles (GNPs) and p-toluenesulfonic acid (pTSA) on the surface of an indium tin oxide (ITO)-coated glass plate. The carboxyl functional groups surrounding the GNPs within the polymer matrix were utilized for the immobilization of urease enzyme through carbodiimide coupling reaction for the construction of a Urs/GNP(MPA)–PPy/ITO-glass bioelectrode for urea detection in Tris–HCl buffer. The resulting bioelectrode film was characterized by atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), contact angle measurement, Fourier transform infrared spectroscopy (FTIR), and electrochemical techniques. The potentiometric response of the bioelectrode made of polymer nanocomposite films of two different thicknesses prepared at 100 and 250 mC cm−2 charge densities, respectively, was studied towards the urea concentration in Tris–HCl buffer (pH 7.4). The thin polymer nanocomposite film-based bioelectrode prepared at 100 mC cm−2 charge density exhibited a comparatively good potentiometric response than a thick 250 mC cm−2 charge density film with a linear range of urea detection from 0.01 to 10 mM with a sensitivity of 29.7 mV per decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gan, Y. X. (2012). Micron, 43, 782–817.

    Article  CAS  Google Scholar 

  2. Li, Y., Rizzo, A., Cingolani, R., & Gigli, G. (2000). Advanced Materials, 18, 2545–2548.

    Article  Google Scholar 

  3. Wang, Q., & Seo, D. K. (2006). Chemistry of Materials, 18, 5764–5767.

    Article  CAS  Google Scholar 

  4. Ding, S. Y., Jones, M., Tucker, M. P., Nedeljkovic, J. M., Wall, J., Simon, M. N., Rumbles, G., & Himmel, M. E. (2003). Nano Letters, 3, 1581–1585.

    Article  CAS  Google Scholar 

  5. Rajesh, Das, B. K., Srinivas, S., & Mulchandani, A. (2011). Applied Physics Letters, 98, 013701–013703.

    Article  Google Scholar 

  6. Daniel, M. C., & Astruc, D. (2004). Chemical Reviews, 104, 293–346.

    Article  CAS  Google Scholar 

  7. Taniguchi, T., Inada, T., Kashiwakura, T., Murakami, F., Kohri, M., & Nakahira, T. (2011). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 377, 63–69.

    Article  CAS  Google Scholar 

  8. Ishida, T., Kuroda, K., Kinoshita, N., Minagawa, W., & Haruta, M. (2008). Journal of Colloid and Interface Science, 323, 105–111.

    Article  CAS  Google Scholar 

  9. Soares, J. C., Brisolari, A., Rodrigues, V. C., Sanches, E. A., & Goncalves, D. (2012). Reaction and Functional Polymers, 72, 148–152.

    Article  CAS  Google Scholar 

  10. Ali, S. M. U., Nur, O., Willander, M., & Danielsson, B. (2010). Sensors and Actuators B: Chemical, 145, 869–874.

    Article  Google Scholar 

  11. Elnosallamy, M. A. F. (2006). Analitica Chimica Acta, 564, 253–257.

    Article  Google Scholar 

  12. Kulapina, E. G., Snesarev, S. V., & Makarova, N. M. (2001). Journal of Analytical Chemistry, 66, 78–83.

    Article  Google Scholar 

  13. Ahuja, T., Kumar, D., & Rajesh. (2008). Sensor Letters, 6, 663–674.

    Article  CAS  Google Scholar 

  14. Ahuja, T., Mir, I. A., Kumar, D., & Rajesh, X. (2007). Biomaterials, 28, 791–805.

    Article  CAS  Google Scholar 

  15. Puri, N., Mishra, S. K., Niazi, A., Biradar, A. M., & Rajesh. (2013). Synthetic Metals, 169, 18–24.

    Article  CAS  Google Scholar 

  16. Rajesh, Ahuja, T., & Kumar, D. (2009). Sensors and Actuators B: Chemical, 136, 275–286.

    Article  CAS  Google Scholar 

  17. Ciana, L. D., & Caputo, G. (1996). Clinical Chemistry, 42, 1079–1085.

    Google Scholar 

  18. Rajesh, Bisht, V., Takashima, W., & Kaneto, K. (2005). Reactive and Functional Polymers, 62, 51–59.

    Article  CAS  Google Scholar 

  19. Gyorgy, E., Sima, F., Mihailescu, I. N., Smausz, T., Hopp, B., Predoi, D., Sima, L. E., & Petrescu, S. M. (2010). Materials Science and Engineering: C, 30, 537–541.

    Article  CAS  Google Scholar 

  20. Syu, M. J., & Chang, Y. S. (2009). Biosensors and Bioelectronics, 24, 2671–2677.

    Article  CAS  Google Scholar 

  21. Massafera, M. P., & Torresi, S. I. C. (2009). Sensors and Actuators B: Chemical, 137, 476–482.

    Article  CAS  Google Scholar 

  22. Castillo-Ortega, M. M., Rodriguez, D. E., Encinas, J. C., Plascencia, M., Mendez-Velarde, F. A., & Olayo, R. (2005). Sensors and Actuators B: Chemical, 85, 19–25.

    Article  Google Scholar 

  23. Knock, R., Lenarczuk, T., Radomska, A., & Glab, S. (2001). Analyst, 126, 1080–1085.

    Article  Google Scholar 

  24. Chen, W., Li, C. M., Chen, P., & Sun, C. Q. (2007). Electrochimica Acta, 52, 2845–2849.

    Article  CAS  Google Scholar 

  25. Sen, T., & Patra, A. (2009). Journal of Physical Chemistry C, 113, 13125–13132.

    Article  CAS  Google Scholar 

  26. Vishnuvardhan, T. K., Kulkarni, V. R., Basavaraja, C., & Raghavendra, S. C. (2006). Bulletin of Materials Science, 29, 77–83.

    Article  CAS  Google Scholar 

  27. Mishra, S. K., Pasricha, R., Biradar, A. M., & Rajesh. (2012). Applied Physics Letters, 100, 053701–053704.

    Article  Google Scholar 

  28. Lisdat, F., & Schafer, D. (2008). Analytical and Bioanalytical Chemistry, 391, 1555–1567.

    Article  CAS  Google Scholar 

  29. Adeloju, S. B., Shaw, S. J., & Wallace, G. G. (1993). Analitica Chimica Acta, 281, 621–627.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. R.C. Budhani, Director, National Physical Laboratory, New Delhi, India for providing the research facilities. The authors, Nidhi Puri and Sujeet Kumar Mishra, are thankful to CSIR for providing Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajesh, Puri, N., Mishra, S.K. et al. Microstructural and Potential Dependence Studies of Urease-Immobilized Gold Nanoparticles–Polypyrrole Composite Film for Urea Detection. Appl Biochem Biotechnol 172, 1055–1069 (2014). https://doi.org/10.1007/s12010-013-0564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0564-9

Keywords

Navigation