Skip to main content
Log in

Antioxidant and Biochemical Activities of Mixed Ligand Complexes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Novel 4-aminoantipyrine based mixed ligand metal complexes with the Schiff bases ofL1(L1-4(furanylmethyleneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one and L2/ L3/ L4are 2-(2-chlorobenzylideneamino)phenol, 2-(3-chlorobenzylideneamino)phenol, 2-(4-chlorobenzylideneamino)phenol were synthesized. The structures of the mixed ligand complexes were established by analytical and spectral techniques. They were screened for in vitro antimicrobial activity against bacteria and fungi by disc diffusion method. The interaction of metal complexes with CT-DNA was investigated by UV–vis, cyclic voltammetry, viscosity and thermal denaturation studies.DNA interaction studies suggest that metal complex binds to calf thymus DNA (CT-DNA) through intercalation mode. Superoxide dismutase activity of these complexes has also been studied. The free ligands and their metal complexes have been tested for in vitro antioxidant activity by the reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH).The antioxidant activities of the complexes were studied and compared with the activity of ascorbic acid. Cu(II) complex showed superior antioxidant activity than other complexes. The solvatochromic behaviour of complexes was also performed in various solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alexander, V. (1995). Chem. Rev., 95, 273–342.

    Article  CAS  Google Scholar 

  2. Albert, A. (1979). The physico-chemical basis of therapy, selective toxicity (6th ed., p. 23). London: Chapman Hall.

    Google Scholar 

  3. Hughes, M. N. (1981). The inorganic chemistry of biological processes vol 315 (2nd ed., p. 113). New York: Wiley.

    Google Scholar 

  4. Tao, D., Yang, X., Li, Y., Gio, Y., & Yang, L. (2003). Chem. Pharm. Bull., 51, 494–502.

    Article  Google Scholar 

  5. Chakrabarti, S., Dasgupta, D., & Bhattacharyya, D. (2000). J. Biol. Phys., 26, 203–218.

    Article  CAS  Google Scholar 

  6. Shahabadi, N., Kashanian, S., & Darabi, F. (2010). Eur. J. Med. Chem., 45, 4239–4245.

    Article  CAS  Google Scholar 

  7. Rosenberg, B., VanCamp, L., Trosko, J. E., & Mansour, V. H. (1969). Nature, 222, 385–386.

    Article  CAS  Google Scholar 

  8. Pyle, A. M., & Barton, J. K. (1990). Prog. Inorg. Chem., 38, 413–475.

    Article  CAS  Google Scholar 

  9. Desoize, B., & Madoulet, C. (2002). Crit. Rev. Oncol. Hematol., 42, 317–325.

    Article  Google Scholar 

  10. Shah, N., & Dizon, D. S. (2009). Future Oncol., 5, 33–42.

    Article  CAS  Google Scholar 

  11. Gunes, D. A., Florea, A. M., Splettstoesser, F., & Busselberg, D. (2009). Neurotoxicology, 30, 194–202.

    Article  Google Scholar 

  12. Florea, A. M., & Busselberg, D. (2006). Biometals, 19, 419–427.

    Article  CAS  Google Scholar 

  13. Kostova, I. (2006). Curr. Med. Chem., 13, 1085–1107.

    Article  CAS  Google Scholar 

  14. Kopf-Maier, P., Kopf, H., Neuse, E. W., & Cancer Res, J. (1984). Clin. Oncol., 108, 336–340.

    CAS  Google Scholar 

  15. Tsang, R. Y., Al-Fayea, T., & Au, H. J. (2009). Drug Saf., 32, 1109–1122.

    Article  CAS  Google Scholar 

  16. Ott, I., Kircher, B., Schumacher, P., Schmidt, K., & Gust, R. (2005). J. Med. Chem., 48, 622–629.

    Article  CAS  Google Scholar 

  17. M.A. Yakupec. (2008). Dalton Trans. 183–194.

  18. Oberley, T. D., Oberley, L. W., & Pal-Yu, B. (1993). Free radicals in aging (pp. 247–268). Boca Raton: CRC Press.

    Google Scholar 

  19. Oberley, L. W. (2005). Biomed. Pharmacother., 59, 143–148.

    Article  CAS  Google Scholar 

  20. Mitrunen, K., Sillanpaa, P., Kataja, V., Eskelinen, M., Kosma, V., Benhamou, S., Uusitupa, M., & Hirvonen, A. (2001). Carcinogenesis, 22, 827–829.

    Article  CAS  Google Scholar 

  21. Muscoli, C., Cuzzocrea, S., Riley, D. P., Zweier, J. L., Thiemermann, C., Wang, Z., & Salvemini, D. (2003). Br. J. Pharmacol., 140, 445–460.

    Article  CAS  Google Scholar 

  22. Salvemini, D., Riley, D. P., & Cuzzocrea, S. (2002). Nature Rev. Drug Discovery, 1, 367–374.

    Article  CAS  Google Scholar 

  23. Vogel, A. I. (1978). A Textbook of Quantitative Inorganic Analysis Including Elementary Instrumental Analysis (4th ed.). London: Longman.

    Google Scholar 

  24. Kamal Ismail, Z., El-Dissouky, A., & Aziza Shehadab, Z. (1997). Polyhedron, 16, 2903–3069.

    Article  Google Scholar 

  25. Mishra, A. P., Mishra, R. K., Mrituanjay Pandey, D., & Russ, J. (2011). Inorg. Chem, 11, 1757–1764.

    Google Scholar 

  26. Pandhare, G. R., Shindea, V. M., & Deshpande, Y. H. (2008). Rasayan J. Chem., 1, 337–341.

    CAS  Google Scholar 

  27. Chen, Y., Wang, M., Rosen, R. T., & Ho, C. T. (1999). J Agric Food Chem., 47, 2226–2228.

    Article  CAS  Google Scholar 

  28. Bhirud, R. G., & Shrivastava, T. S. (1991). Inorg. Chim. Acta, 179, 125–131.

    Article  CAS  Google Scholar 

  29. Geary, W. J. (1971). Coord. Chem. Rev., 7, 81.

    Article  CAS  Google Scholar 

  30. LDutt, R., & Syamal, A. (1992). Elements of magneto chemistry (2nd ed., pp. 203–250). New Delhi: East-West Press.

    Google Scholar 

  31. BLever, A. P. (1984). Inorganic electronic spectroscopy (2nd ed., p. 540). New York: Elsevier Science.

    Google Scholar 

  32. Temel, H., Ilhan, S., Sekerci, M., & Ziyadanogullari, R. (2002). Spectrosc Lett, 35, 219–228.

    Article  CAS  Google Scholar 

  33. Kepert, C. M., Deacon, G. B., & Spiccia, L. (2003). Inrg. Chim. Acta., 355C, 211–220.

    Google Scholar 

  34. Hathaway, B. J., & Billing, D. E. (1970). Coord. Chem. Rev., 5, 143–207.

    Article  CAS  Google Scholar 

  35. Pogni, R., Bartoo, M. C., Diaz, A., & Basosi, R. (2000). J. Inorg. Biochem., 79, 333–337.

    Article  CAS  Google Scholar 

  36. Le Pecq, J. B., & Paoletti, C. (1967). J. Mol. Biol., 27, 87–106.

    Article  Google Scholar 

  37. Satyanarayana, S., Dabroniak, J. C., & Chaires, J. B. (1992). Biochem., 31, 9319–9324.

    Article  CAS  Google Scholar 

  38. Satyanaryana, S., Daborusak, J. C., & Chaires, J. B. (1993). Biochem., 32, 2573–2584.

    Article  Google Scholar 

  39. Kumar, C. V., & Asuncion, E. H. (1993). J. Am. Chem. Soc., 115, 8547–8553.

    Article  CAS  Google Scholar 

  40. Arounaguiri, S., & Maiya, B. G. (1996). Inorg. Chem., 35, 4267–4270.

    Article  CAS  Google Scholar 

  41. McCoubery, A., Latham, H. C., Cook, P. R., Rodger, A., & Lowe, G. (1996). FEBS Lett, 73, 380–387.

    Google Scholar 

  42. Tselepi-Kalouli, E., & Katsaros, N. (1989). J. Inorg. Biochem., 37, 271–282.

    Article  CAS  Google Scholar 

  43. Soares, J. R., Dinis, T. C. P., Cunha, A. P., & Almeida, L. M. (1997). Free Radical Res., 26, 469–478.

    Article  CAS  Google Scholar 

  44. Duh, P. D., Tu, Y. Y., & Yen, G. C. (1999). Lebensmittel-Wissenschaft und-Technologie, 32, 269–277.

    CAS  Google Scholar 

  45. Bukhari, B., Memon, S., Mahroof-Tahir, M., & Bhanger, M. I. (2009). Spectrochim. Acta A, 71, 1901–1906.

    Article  Google Scholar 

  46. Gabrielska, J., Soczynska-Kordala, M., Hladyszowski, J., Zylka, R., Miskiewicz, J., & Przestalski, S. (2006). Agric. Food Chem., 54, 7735–7746.

    Article  CAS  Google Scholar 

  47. J. A. Fee. (1981). Metal ions in biological system, ed.H. Sigel, vol 28. New York: Marcel Dekker. pp. 455–505.

  48. LatifAbuhijleb, A. (1997). J. Inorg. Biochem., 68, 167–175.

    Article  Google Scholar 

  49. Belaida, S., Landreaub, A., Djebbara, S., Benali-Baiticha, O., Bouetb, G., & Philippe Boucharac, J. (2008). J. Inorg. Biochem., 102, 63–69.

    Article  Google Scholar 

  50. Dharamaraj, N., Viswanathamurthi, P., & Natarajan, K. (2001). Transition. Met. Chem., 26, 105–109.

    Article  Google Scholar 

  51. Farrell, N. (2007). Coord. Chem. Rev., 232, 1–31.

    Article  Google Scholar 

  52. Arslan, H., Duran, N., Borekci, G., Ozer, C. K., & Akbay, C. (2009). Molecules, 14, 519–527.

    Article  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to the Chancellor, Noorul Islam Centre for Higher Education, Kumaracoil for providing research facilities and financial support. We also express our sincere thanks to the Head, Department of Chemistry, Noorul Islam Centre for Higher Education, Kumaracoil for providing valuable research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Joseph.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2043 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joseph, J., Rani, G.A. Antioxidant and Biochemical Activities of Mixed Ligand Complexes. Appl Biochem Biotechnol 172, 867–890 (2014). https://doi.org/10.1007/s12010-013-0557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0557-8

Keywords

Navigation