Applied Biochemistry and Biotechnology

, Volume 172, Issue 2, pp 840–853 | Cite as

Perspective and Prospective of Pretreatment of Corn Straw for Butanol Production

Article

Abstract

Corn straw, lignocellulosic biomass, is a potential substrate for microbial production of bio-butanol. Bio-butanol is a superior second generation biofuel among its kinds. Present researches are focused on the selection of butanol tolerant clostridium strain(s) to optimize butanol yield in the fermentation broth because of toxicity of bio-butanol to the clostridium strain(s) itself. However, whatever the type of the strain(s) used, pretreatment process always affects not only the total sugar yield before fermentation but also the performance and growth of microbes during fermentation due to the formation of hydroxyl-methyl furfural, furfural and phenolic compounds. In addition, the lignocellulosic biomasses also resist physical and biological attacks. Thus, selection of best pretreatment process and its parameters is crucial. In this context, worldwide research efforts are increased in past 12 years and researchers are tried to identify the best pretreatment method, pretreatment conditions for the actual biomass. In this review, effect of particle size, status of most common pretreatment method and enzymatic hydrolysis particularly for corn straw as a substrate is presented. This paper also highlights crucial parameters necessary to consider during most common pretreatment processes such as hydrothermal, steam explosion, ammonia explosion, sulfuric acid, and sodium hydroxide pretreatment. Moreover, the prospective of pretreatment methods and challenges is discussed.

Keywords

Bio-butanol Corn straw Particle size Pretreatment 

References

  1. 1.
    Liu, Z. H., Qin, L., Pang, F., Jin, M. J., Li, B. Z., Kang, Y., & Yuan, Y. J. (2013). Effects of biomass particle size on steam explosion pretreatment performance for improving the enzyme digestibility of corn stover. Industrial Crops and Products, 44, 176–184. doi:10.1016/j.indcrop.2012.11.009.CrossRefGoogle Scholar
  2. 2.
    Bondesson, P. M., Galbe, M., & Zacchi, G. (2013). Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnology for biofuels, 6(1), 11. doi:10.1186/1754-6834-6-11.CrossRefGoogle Scholar
  3. 3.
    Yang, L., Cao, J., Mao, J., & Jin, Y. (2013). Sodium carbonate–sodium sulfite pretreatment for improving the enzymatic hydrolysis of rice straw. Industrial Crops and Products, 43, 711–717. doi:10.1016/j.indcrop.2012.08.027.CrossRefGoogle Scholar
  4. 4.
    Yoo, C. G., Wang, C., Yu, C., & Kim, T. H. (2013). Enhancement of enzymatic hydrolysis and Klason lignin removal of corn stover using photocatalyst-assisted ammonia pretreatment. Applied biochemistry and biotechnology, 169(5), 1648–1658. doi:10.1007/s12010-012-0002-4.CrossRefGoogle Scholar
  5. 5.
    Zhang, C., Pang, F., Li, B., Xue, S., & Kang, Y. (2013). Recycled aqueous ammonia expansion (RAAE) pretreatment to improve enzymatic digestibility of corn stalks. Bioresource Technology, 138, 314–320. doi:10.1016/j.biortech.2013.03.091.CrossRefGoogle Scholar
  6. 6.
    Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Selection and optimization of microbial hosts for biofuels production. Metabolic engineering, 10(6), 295–304. doi:10.1016/j.ymben.2008.06.009.CrossRefGoogle Scholar
  7. 7.
    Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., & Liao, J. C. (2008). Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic engineering, 10(6), 305–311. doi:10.1016/j.ymben.2007.08.003.CrossRefGoogle Scholar
  8. 8.
    Cheng, C.-L., Che, P.-Y., Chen, B.-Y., Lee, W.-J., Lin, C.-Y., & Chang, J.-S. (2012). Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Applied Energy, 100, 3–9. doi:10.1016/j.apenergy.2012.05.042.CrossRefGoogle Scholar
  9. 9.
    Jang, Y., Lee, J. Y., & Lee, J. (2012). Enhanced Butanol Production Obtained by Reinforcing the Direct Butanol-Forming Route in Clostridium acetobutylicum. American society of microbiology, 3(5), 1–9. doi:10.1128/mBio.00314-12.Updated.Google Scholar
  10. 10.
    Lee, S., Cho, M. O., Park, C. H., Chung, Y., & Kim, J. H. (2008). Continuous Butanol Production Using Suspended and Immobilized Clostridium beijerinckii NCIMB 8052 with Supplementary Butyrate. Energy and Fuel, 22, 3459–3464.CrossRefGoogle Scholar
  11. 11.
    Liu, Z., Ying, Y., Li, F., Ma, C., & Xu, P. (2010). Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of industrial microbiology & biotechnology, 37(5), 495–501. doi:10.1007/s10295-010-0695-8.CrossRefGoogle Scholar
  12. 12.
    Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., & Keasling, J. D. (2008). Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microbial cell factories, 7, 36. doi:10.1186/1475-2859-7-36.CrossRefGoogle Scholar
  13. 13.
    Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488, 320–328.CrossRefGoogle Scholar
  14. 14.
    Richmond, C., Ujor, V., & Ezeji, T. C. (2012). Impact of syringaldehyde on the growth of Clostridium beijerinckii NCIMB 8052 and butanol production. 3. Biotech, 2(2), 159–167. doi:10.1007/s13205-011-0042-4.Google Scholar
  15. 15.
    Qureshi, N., Saha, B. C., & Cotta, M. (2007). Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess and biosystems engineering, 30(6), 419–427. doi:10.1007/s00449-007-0137-9.CrossRefGoogle Scholar
  16. 16.
    Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S., Cotta, M. A., & Blaschek, H. P. (2008). Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresource technology, 99(13), 5915–5922. doi:10.1016/j.biortech.2007.09.087.CrossRefGoogle Scholar
  17. 17.
    Harun, M. Y., Dayang Radiah, A. B., Zainal Abidin, Z., & Yunus, R. (2011). Effect of physical pretreatment on dilute acid hydrolysis of water hyacinth (Eichhornia crassipes). Bioresource technology, 102(8), 5193–5199. doi:10.1016/j.biortech.2011.02.001.CrossRefGoogle Scholar
  18. 18.
    Zhu, J. Y., & Pan, X. J. (2010). Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresource technology, 101(13), 4992–5002. doi:10.1016/j.biortech.2009.11.007.CrossRefGoogle Scholar
  19. 19.
    Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Industrial & Engineering Chemistry Research, 48(8), 3713–3729. doi:10.1021/ie801542g.CrossRefGoogle Scholar
  20. 20.
    Taherzadeh, M. J., & Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources, 2, 472–499.Google Scholar
  21. 21.
    Zheng, Y., Pan, Z., & Zhang, R. (2009). OVerview of Biomass Pretreatment for Cellulosic Ethanol Production. International Journal of Agricultural and Biological Engineering, 2(3), 51–68.Google Scholar
  22. 22.
    Zheng, Y.-N., Li, L.-Z., Xian, M., Ma, Y.-J., Yang, J.-M., Xu, X., & He, D.-Z. (2009). Problems with the microbial production of butanol. Journal of industrial microbiology & biotechnology, 36(9), 1127–1138. doi:10.1007/s10295-009-0609-9.CrossRefGoogle Scholar
  23. 23.
    Saha, B. C., Yoshida, T., Cotta, M. A., & Sonomoto, K. (2013). Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products, 44, 367–372. doi:10.1016/j.indcrop.2012.11.025.CrossRefGoogle Scholar
  24. 24.
    Chen, Y., Stevens, M. A., Zhu, Y., Holmes, J., & Xu, H. (2013). Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for biofuels, 6(1), 8. doi:10.1186/1754-6834-6-8.CrossRefGoogle Scholar
  25. 25.
    Lee, H.-J., Seo, Y.-J., & Lee, J.-W. (2013). Characterization of oxalic acid pretreatment on lignocellulosic biomass using oxalic acid recovered by electrodialysis. Bioresource technology, 133, 87–91. doi:10.1016/j.biortech.2013.01.051.CrossRefGoogle Scholar
  26. 26.
    Yu, J., Zhang, J., He, J., Liu, Z., & Yu, Z. (2009). Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource technology, 100(2), 903–908. doi:10.1016/j.biortech.2008.07.025.CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Spratling, B. M., Zobell, D. R., Wiedmeier, R. D., & Mcallister, T. A. (2004). Effect of alkali pretreatment of wheat straw on the efficacy of exogenous fibrolytic enzymes The online version of this article, along with updated information and services, is located on the World Wide Web at: Effect of alkali pretreatment of wheat st. Journal of Animal Science, 82, 198–208.Google Scholar
  28. 28.
    Yang, B., & Wyman, C. E. (2008). Pretreatment : the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioproduct and Biorefining, 2, 26–40. doi:10.1002/bbb.CrossRefGoogle Scholar
  29. 29.
    Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M. J., & Horváth, I. S. (2010). Pretreatment of paper tube residuals for improved biogas production. Bioresource technology, 101(4), 1206–1212. doi:10.1016/j.biortech.2009.09.029.CrossRefGoogle Scholar
  30. 30.
    Ezeji, T. C., & Blaschek, H. P. (2010). Butanol from lignocellulosic biomass. Biofuel from agricultural waste and by product, Chapter, 3, 19–36.CrossRefGoogle Scholar
  31. 31.
    Mu, X., Sun, W., Liu, C., & Wang, H. (2011). Improved efficiency of separate hexose and pentose fermentation from steam-exploded corn stalk for butanol production using Clostridium beijerinckii. Biotechnology letters, 33(8), 1587–1591. doi:10.1007/s10529-011-0598-4.CrossRefGoogle Scholar
  32. 32.
    Donghai, S. U., Junshe, S., Ping, L., & Yanping, L. (2006). Effects of Different Pretreatment Modes on the Enzymatic Digestibil- ity of Corn Leaf and Corn Stalk. Chinese Journal of Chemical Engineering, 14(6), 796–801.CrossRefGoogle Scholar
  33. 33.
    Zhu, Z., Sathitsuksanoh, N., Vinzant, T., Schell, D. J., McMillan, J. D., & Zhang, Y.-H. P. (2009). Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnology and bioengineering, 103(4), 715–724. doi:10.1002/bit.22307.CrossRefGoogle Scholar
  34. 34.
    Um, B.-H., & van Walsum, G. P. (2012). Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose. Applied biochemistry and biotechnology, 168(2), 406–420. doi:10.1007/s12010-012-9784-7.CrossRefGoogle Scholar
  35. 35.
    Qin, L., Liu, Z.-H., Li, B.-Z., Dale, B. E., & Yuan, Y.-J. (2012). Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresource technology, 112, 319–326. doi:10.1016/j.biortech.2012.02.134.CrossRefGoogle Scholar
  36. 36.
    Gao, K., Li, Y., Tian, S., & Yang, X. (2012). Screening and characteristics of a butanol-tolerant strain and butanol production from enzymatic hydrolysate of NaOH-pretreated corn stover. World journal of microbiology & biotechnology, 28(10), 2963–2971. doi:10.1007/s11274-012-1107-1.CrossRefGoogle Scholar
  37. 37.
    Ezeji, T., & Blaschek, H. P. (2008). Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresource technology, 99(12), 5232–5242. doi:10.1016/j.biortech.2007.09.032.CrossRefGoogle Scholar
  38. 38.
    Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Butanol Production From Agricultural Residues : Impact of Degradation Products on Clostridium beijerinckii Growth and Butanol Fermentation. Biotechnology and bioengineering, 97(6), 1460–1469. doi:10.1002/bit.CrossRefGoogle Scholar
  39. 39.
    Lu, X. B., Zhang, Y. M., Yang, J., & Liang, Y. (2007). Enzymatic Hydrolysis of Corn Stover after Pretreatment with Dilute Sulfuric Acid. Chemical Engineering & Technology, 30(7), 938–944. doi:10.1002/ceat.200700035.CrossRefGoogle Scholar
  40. 40.
    Qureshi, N., Saha, B. C., Dien, B., Hector, R. E., & Cotta, M. A. (2010). Production of butanol (a biofuel) from agricultural residues: Part I – Use of barley straw hydrolysate☆. Biomass and Bioenergy, 34(4), 559–565. doi:10.1016/j.biombioe.2009.12.024.CrossRefGoogle Scholar
  41. 41.
    Qureshi, N., Saha, B. C., Hector, R. E., Dien, B., Hughes, S., Liu, S., & Cotta, M. A. (2010). Production of butanol (a biofuel) from agricultural residues: Part II – Use of corn stover and switchgrass hydrolysates☆. Biomass and Bioenergy, 34(4), 566–571. doi:10.1016/j.biombioe.2009.12.023.CrossRefGoogle Scholar
  42. 42.
    Sun, L., Li, C., Xue, Z., Simmons, B., & Singh, S. (2013). Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment. RSC Advances, 3(6), 2017. doi:10.1039/c2ra20706k.CrossRefGoogle Scholar
  43. 43.
    Chundawat, S. P. S., Venkatesh, B., & Dale, B. E. (2007). Effect of Particle Size Based Separation of Milled Corn Stover on AFEX Pretreatment and Enzymatic Digestibility, 96(2), 219–231. doi:10.1002/bit.Google Scholar
  44. 44.
    Kim, T. H., & Lee, Y. Y. (2005). Pretreatment of Corn Stover by Soaking AND. Applied Biochemistry And Biotechnology, 121, 1119–1132.CrossRefGoogle Scholar
  45. 45.
    Avci, A., Saha, B. C., Dien, B. S., Kennedy, G. J., & Cotta, M. (2013). Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production. Bioresource technology, 130, 603–612. doi:10.1016/j.biortech.2012.12.104.CrossRefGoogle Scholar
  46. 46.
    Lloyd, T., & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource technology, 96(18), 1967–1977. doi:10.1016/j.biortech.2005.01.011.CrossRefGoogle Scholar
  47. 47.
    Kim, T. H., & Lee, Y. Y. (2005). Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource technology, 96(18), 2007–2013. doi:10.1016/j.biortech.2005.01.015.CrossRefGoogle Scholar
  48. 48.
    Liu, Z.-H., Qin, L., Jin, M.-J., Pang, F., Li, B.-Z., Kang, Y., & Yuan, Y.-J. (2013). Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment. Bioresource technology, 132, 5–15. doi:10.1016/j.biortech.2013.01.016.CrossRefGoogle Scholar
  49. 49.
    Teymouri, F., Laureano-Perez, L., Alizadeh, H., & Dale, B. E. (2005). Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource technology, 96(18), 2014–2018. doi:10.1016/j.biortech.2005.01.016.CrossRefGoogle Scholar
  50. 50.
    Kim, T. H., & Lee, Y. Y. (2007). Pretreatment of Corn Stover by Soaking in Aqueous Ammonia at Moderate Temperatures. Applied Biochemistry And Biotechnology, 136(7), 81–92.CrossRefGoogle Scholar
  51. 51.
    Vancov, T., & McIntosh, S. (2012). Mild acid pretreatment and enzyme saccharification of Sorghum bicolor straw. Applied Energy, 92, 421–428. doi:10.1016/j.apenergy.2011.11.053.CrossRefGoogle Scholar
  52. 52.
    Guo, T., Tang, Y., Zhang, Q.-Y., Du, T.-F., Liang, D.-F., Jiang, M., & Ouyang, P.-K. (2012). Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation. Journal of industrial microbiology & biotechnology, 39(3), 401–407. doi:10.1007/s10295-011-1017-5.CrossRefGoogle Scholar
  53. 53.
    Wang, L., & Chen, H. (2011). Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochemistry, 46(2), 604–607. doi:10.1016/j.procbio.2010.09.027.CrossRefGoogle Scholar
  54. 54.
    Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource technology, 93(1), 1–10. doi:10.1016/j.biortech.2003.10.005.CrossRefGoogle Scholar
  55. 55.
    Mariano, A. P., Filho, R. M., & Ezeji, T. C. (2012). Energy requirements during butanol production and in situ recovery by cyclic vacuum. Renewable Energy, 47, 183–187. doi:10.1016/j.renene.2012.04.041.CrossRefGoogle Scholar
  56. 56.
    Maddox, I. S., Steiner, E., Hirsch, S., Wessner, S., Gutierrez, N., Gapes, J. R., & Schuster, K. C. (2000). The cause of “acid-crash” and “acidogenic fermentations” during the batch acetone-butanol-ethanol (ABE-) fermentation process. Journal of molecular microbiology and biotechnology, 95(1).Google Scholar
  57. 57.
    Ni, Y., & Sun, Z. (2009). Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China. Applied microbiology and biotechnology, 83(3), 415–423. doi:10.1007/s00253-009-2003-y.CrossRefGoogle Scholar
  58. 58.
    Parekh, S. R., Parekh, R. S., & Wayman, M. (1988). Ethanol and butanol production by fermentation of enzymatically saccharified SO2-prehydrolysed lignocellulosics. Enzyme and Microbial Technology, 10(11), 660–668.CrossRefGoogle Scholar
  59. 59.
    Zhang, Y., Ma, Y., Yang, F., & Zhang, C. (2009). Continuous acetone-butanol-ethanol production by corn stalk immobilized cells. Journal of industrial microbiology & biotechnology, 36(8), 1117–1121. doi:10.1007/s10295-009-0582-3.CrossRefGoogle Scholar
  60. 60.
    Lin, Y., Wang, J., Wang, X., & Sun, X. (2011). Optimization of butanol production from corn straw hydrolysate by Clostridium acetobutylicum using response surface method. Chinese Science Bulletin, 56(14), 1422–1428. doi:10.1007/s11434-010-4186-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nawa Raj Baral
    • 1
    • 2
  • Jiangzheng Li
    • 1
  • Ajay Kumar Jha
    • 1
  1. 1.State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Department of Mechanical Engineering, Pulchowk Campus, Institute of EngineeringTribhuvan UniversityKathmanduNepal

Personalised recommendations