Skip to main content
Log in

Extension of Polyphenolics by CWPO-C Peroxidase Mutant Containing Radical-Robust Surface Active Site

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Expressed as insoluble forms in Escherichia coli, native cationic cell wall peroxidase (CWPO-C) from the poplar tree and mutant variants were successfully reactivated via refolding experiments and used to elucidate the previously presumed existence of an electron transfer (ET) pathway in the CWPO-C structure. Their catalytic properties were fully characterized through various analyses including steady-state kinetic, direct oxidation of lignin macromolecules and their respective stabilities during the polymerization reactions. The analysis results proved that the 74th residue on the CWPO-C surface plays an important role in catalyzing the macromolecules via supposed ET mechanism. By comparing the residual activities of wild-type CWPO-C and mutant 74W CWPO-C after 3 min, mutation of tyrosine 74 residue to tryptophan increased the radical resistance of peroxidase up to ten times dramatically while maintaining its capability to oxidize lignin macromolecules. Furthermore, extension of poly(catechin) as well as lignin macromolecules with CWPO-C Y74W mutant clearly showed that this radical-resistant peroxidase mutant can increase the molecular weight of various kinds of polyphenolics by using surface-located active site. The anti-oxidation activity of the synthesized poly(catechin) was confirmed by xanthine oxidase assay. The elucidation of a uniquely catalytic mechanism in CWPO-C may improve the applicability of the peroxidase/H2O2 catalyst to green polymer chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ronald, H., & Wilfred, V. (2001). Plant Physiol, 126, 1351–1357.

    Article  Google Scholar 

  2. Takahama, U., & Oniki, T. (1997). Plant Cell Physiol, 38, 456–462.

    Article  CAS  Google Scholar 

  3. Sahoo, S. K., Liu, W., Samuelson, L. A., Kumar, J., & Colli, A. L. (2002). Macromolecules, 35, 9990–9998.

    Article  CAS  Google Scholar 

  4. Mejias, L., Reihmann, M. H., Sepulveda-Boza, S., & Ritter, H. (2002). Macromol Biosci, 2, 24–32.

    Article  CAS  Google Scholar 

  5. Wariishi, H., Sheng, D., & Gold, M. H. (1994). Biochemistry, 33, 5545–5552.

    Article  CAS  Google Scholar 

  6. Blodig, W., Doyle, W., Smith, A. T., & Piontek, K. (1998). Biochemistry, 37, 8832–8838.

    Article  CAS  Google Scholar 

  7. Doyle, W. A., Blodig, W., Veitch, N. C., Piontek, K., & Smith, A. T. (1998). Biochemistry, 37, 15097–15105.

    Article  CAS  Google Scholar 

  8. Sasaki, S., Nonaka, D., Wariishi, H., Tsutsumi, Y., & Kondo, R. (2008). Phytochemistry, 69, 348–355.

    Article  CAS  Google Scholar 

  9. Shigeto, J., Itoh, Y., Tsutsumi, Y., & Kondo, R. (2012). FEBS Journal., 279, 348–357.

    Article  CAS  Google Scholar 

  10. Kurisawa, M., Chung, J. E., Uyama, H., & Kobayyashi, S. (2003). Macromol Biosci, 3, 758–764.

    Article  CAS  Google Scholar 

  11. Kurisawa, M., Chung, J. E., Kim, Y. J., Uyama, H., & Kobayashi, S. (2003). Biomacromolecules, 4, 469–471.

    Article  CAS  Google Scholar 

  12. Higuchi, R., Krummel, B., & Saiki, R. (1988). Nucleic Acids Res, 16(15), 7351–7367.

    Article  CAS  Google Scholar 

  13. Pham, L. T. M., Kim, S. J., Song, B. K., & Kim, Y. H. (2011). Protein Expr Purif, 80(2), 268–273.

    Article  CAS  Google Scholar 

  14. Lopez-Serrano, M. A., & Ros, B. (1997). J Food Sci, 62(4), 676–723.

    Article  CAS  Google Scholar 

  15. Weinkauf, R., Schanen, P., Yang, D., Soukara, S., & Schlag, E. W. (1995). J Phys Chem, 99, 11255–11265.

    Article  CAS  Google Scholar 

  16. Weinkauf, R., Schanen, P., Metsala, A., Schlag, E. W., Burgle, M., & Kessler, H. (1996). J Phys Chem, 100, 18567–18585.

    Article  CAS  Google Scholar 

  17. Lehr, L., Horneff, T., Weinkauf, R., & Schlag, E. W. (2005). J Phys Chem, 109, 8074–8080.

    Article  CAS  Google Scholar 

  18. Morreel, K., Ralph, J., Kim, H., Lu, F., Goeminne, G., Ralph, S., Messens, E., & Boerjan, W. (2004). Plant Physiol, 136, 3537–3549.

    Article  CAS  Google Scholar 

  19. Hewson, W. D., & Dunford, B. (1976). J Biol Chem, 251, 6036–6042.

    CAS  Google Scholar 

  20. Hewson, W. D., & Dunford, B. (1976). J Biol Chem, 251, 6043–6052.

    CAS  Google Scholar 

  21. Poulos, T. L. (1993). Curr Opin Biotechnol, 4, 484–489.

    Article  CAS  Google Scholar 

  22. Arnao, M. B., Acosta, M., Del-Rio, J. A., & Garcia-Canovas, F. (1990). Biochim Biophys Acta, 1038, 85–89.

    Article  CAS  Google Scholar 

  23. Valderrama, B., Ayala, M., & Vazuquez-Dehalt, R. (2002). Chem Biol, 9, 555–565.

    Article  CAS  Google Scholar 

  24. Nakamoto, S., & Machida, N. (1992). Wat Res., 26, 49–54.

    Article  CAS  Google Scholar 

  25. Wu, Y., Taylor, K. E., Biswas, N., & Bewtra, J. K. (1998). Enzyme Microb Technol, 22, 315–322.

    Article  CAS  Google Scholar 

  26. Ghioureliotis, M., & Nicell, J. A. (1999). Enzyme Microb Technol, 25, 185–193.

    Article  CAS  Google Scholar 

  27. Chang, H. C., Holland, R. D., & Bumpus, J. A. (1999). Chem Biol Interact, 123, 197–217.

    Article  CAS  Google Scholar 

  28. Joback, K. G., & Reid, R. C. (1987). Chem Eng Commun., 57, 233–243.

    Article  CAS  Google Scholar 

  29. Ferreira, D., Steynberg, J.P., Roux, D.G., Brandt, E.V., (1992) Tetrahedron, 48, 1743–1803.

  30. Ferreira, D., & Li, X. C. (2000). Nat Prod Rep, 17, 193–212.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean Government (NRF-2009-0093281, 2013K000361) and Kwangwoon University 2013; we, the authors, are thankful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Hwan Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2,255 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, L.T.M., Kim, S.J., Ahn, U.S. et al. Extension of Polyphenolics by CWPO-C Peroxidase Mutant Containing Radical-Robust Surface Active Site. Appl Biochem Biotechnol 172, 792–805 (2014). https://doi.org/10.1007/s12010-013-0534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0534-2

Keywords

Navigation