Skip to main content
Log in

Endoglucanase and Total Cellulase from Newly Isolated Rhizopus oryzae and Trichoderma reesei: Production, Characterization, and Thermal Stability

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A multienzymatic complex production was evaluated, as well as endoglucanase and total cellulase characterization, during solid-state fermentation of rice industry wastes with Rhizopus oryzae CCT 7560 (newly isolated microorganism) and Trichoderma reesei QM 9414 (control). R. oryzae produced enzymes with higher activity at 15 h of fermentation (5.1 and 2.3 U g−1 to endoglucanase and total cellulase), while T. reesei produced them at 55 h (15.3 and 2.8 U g−1 to endoglucanase and total cellulase). The optimum temperature for total cellulase and endoglucanase was 60 °C. For Trichoderma and Rhizopus, the optimum pH was 5.0 and 6.0 for total cellulase and 6.0 and 5.0 for endoglucanase, respectively. The enzymes produced by Rhizopus presented higher stability at the temperature range evaluated (25–100 °C); the endoglucanase K M value was 20 times lower than the one found for Trichoderma. The characterization of the cellulolytic enzymes from the fungal species native of rice husk revealed that they can be more efficient than the genetically modified enzymes when rice husk and rice bran are used as substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Papinutti, V. L., & Forchiassin, F. (2007). Journal of Food Engineering, 81, 54–59.

    Article  CAS  Google Scholar 

  2. Lee, Y. J., Kim, B. K., Lee, B. H., Jo, K. I., Lee, N. K., Chung, C. H., Lee, Y. C., & Lee, J. W. (2008). Bioresource Technology, 99, 378–386.

    Article  CAS  Google Scholar 

  3. Chandel, A. K., Chandrasekhar, G., Silva, M. B., & Silvério da Silva, S. (2012). Critical Reviews in Biotechnology, 32, 187–202.

    Article  CAS  Google Scholar 

  4. Raghavarao, K. S. M. S., Ranganathan, T. V., & Karanth, N. G. (2003). Biochemical Engineering Journal, 13, 127–135.

    Article  CAS  Google Scholar 

  5. Maurya, D. P., Singh, D., Pratap, D., & Maurya, J. P. (2012). Journal of Environmental Biology, 33, 5–8.

    CAS  Google Scholar 

  6. Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Enzyme and Microbial Technology, 46, 541–549.

    Article  CAS  Google Scholar 

  7. Andersson, S. G. E., & Kurland, C. G. (1998). Trends in Microbiology, 6, 263–268.

    Article  CAS  Google Scholar 

  8. Heidtmann, R. B., Duarte, S. H., Pereira, L. P., Braga, A. R. C., & Kalil, S. J. (2012). Brazilian Journal of Food Technology, 15, 41–49.

    Article  CAS  Google Scholar 

  9. Oliveira, M. S., Kupski, L., Feddern, V., Cipolatti, E. P., Badiale-Furlong, E., & Souza-Soares, L. A. (2010). CyTA- Journal of Food, 8, 229–236.

    Article  CAS  Google Scholar 

  10. Ghose, T. K. (1987). Pure and Applied Chemistry, 59, 257–268.

    Article  CAS  Google Scholar 

  11. Miller, G. L. (1959). Analytical Chemistry, 31, 426–429.

    Article  CAS  Google Scholar 

  12. Baraj, E., Garda-Buffon, J., & Badiale-Furlong, E. (2010). Influence of the trichothecenes DON and T-2 toxin in malt aminolitic enzymes activity. Brazilian Journal of Food Technology, 53, 505–511.

    Google Scholar 

  13. Rodríguez-Fernández, D. E., Rodríguez-León, J. A., Carvalho, J. C., Sturm, W., & Soccol, C. R. (2011). Bioresource Technology, 102, 10657–10662.

    Article  Google Scholar 

  14. Lowry, O. H., Rosenbrough, M. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  15. Siddiqui, K. S., Azhar, M. J., Rashid, M. H., & Rajoka, M. I. (1997). Folia Microbiologica, 42, 312–318.

    Article  CAS  Google Scholar 

  16. Balsan, G., Astolfi, V., Benazzi, T., Meireles, M. A. A., Maugeri, F., Di Luccio, M., Prá, V. D., Mossi, A. J., Treichel, H., & Mazutti, M. A. (2012). Bioprocess and Biosystems Engineering, 35, 1229–1237.

    Article  CAS  Google Scholar 

  17. Saqib, A. A. N., Hassan, M., Khan, N. F., & Baig, S. (2010). Process Biochemistry, 45, 641–646.

    Article  CAS  Google Scholar 

  18. Griffin, D. H. (1993). Fungal physiology (2nd ed.). New York: Wiley.

    Google Scholar 

  19. Sun, W. C., Cheng, C. H., & Lee, W. C. (2008). Process Biochemistry, 43, 1083–1087.

    Article  CAS  Google Scholar 

  20. Yang, C. Y., Sheih, I. C., & Fang, T. J. (2012). Ultrasonics Sonochemistry, 19, 687–691.

    Article  CAS  Google Scholar 

  21. Chandel, A. K., Narasu, M. L., Chandrasekhar, G., Manukyam, A., & Venkateswar Rao, L. (2009). Bioresource Technology, 100, 2404–2410.

    Article  CAS  Google Scholar 

  22. Rastogi, G., Bhalla, A., Adhikari, A., Bischoff, K. M., Hughes, S. P., Christopher, L. P., & Sani, R. K. (2010). Bioresource Technology, 101, 8798–8806.

    Article  CAS  Google Scholar 

  23. Begum, M. F., & Absar, N. (2009). Mycobiology, 37, 121–127.

    Article  CAS  Google Scholar 

  24. Kaur, J., Chadha, B. S., Kumar, B. A., & Saini, H. S. (2007). Bioresource Technology, 98, 74–81.

    Article  CAS  Google Scholar 

  25. Li, D. C., Lu, M., Li, Y. L., & Lu, J. (2003). Enzyme and Microbial Technology, 33, 932–937.

    Article  CAS  Google Scholar 

  26. Lee, K. M., Jeya, M., Joo, A. R., Singh, R., Kim, I. W., & Lee, J. L. (2010). Enzyme and Microbial Technology, 46, 206–211.

    Article  CAS  Google Scholar 

  27. Qin, Y., Wei, X., Song, X., & Qu, Y. (2008). Journal of Biotechnology, 135, 190–195.

    Article  CAS  Google Scholar 

  28. Shuyan, L., Xinyuan, D., Xuemei, L., & Peiji, G. (2006). Chinese Science Bulletin, 51, 191–197.

    Article  Google Scholar 

  29. Whitaker, J. R. (1995). Principles of enzymology for the food sciences (2nd ed.). New York: Marcel Dekker.

    Google Scholar 

  30. de Ortega, N., Diego, S., Perez-Mateos, M., & Busto, M. D. (2004). Food Chemistry, 88, 209–217.

    Article  CAS  Google Scholar 

  31. Ustok, F. I., Tari, C., & Harsa, S. (2010). Food Chemistry, 119, 1114–1120.

    Article  CAS  Google Scholar 

  32. Javed, M. R., Rashid, M. H., Nadeem, H., Riaz, M., & Perveen, R. (2009). Applied Biochemistry and Biotechnology, 157, 483–497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larine Kupski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupski, L., Pagnussatt, F.A., Buffon, J.G. et al. Endoglucanase and Total Cellulase from Newly Isolated Rhizopus oryzae and Trichoderma reesei: Production, Characterization, and Thermal Stability. Appl Biochem Biotechnol 172, 458–468 (2014). https://doi.org/10.1007/s12010-013-0518-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0518-2

Keywords

Navigation