Skip to main content

Advertisement

Log in

Highly Thermostable and pH-Stable Cellulases from Aspergillus niger NS-2: Properties and Application for Cellulose Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Optimization of cultural conditions for enhanced cellulase production by Aspergillus niger NS-2 were studied under solid-state fermentation. Significant increase in yields (CMCase 463.9 ± 20.1 U/g, FPase 101.1 ± 3.5 U/g and β-glucosidase 99 ± 4.0 U/g) were obtained under optimized conditions. Effect of different nutritional parameters was studied to induce the maximum production of cellulase complex. Scale-up studies for enzyme production process were carried out. Characterization studies showed that enzymes produced by A. niger NS-2 were highly temperature- and pH stable. At 50 °C, the half life for CMCase, FPase, β-glucosidase were approximately 240 h. Cellulases from A. niger NS-2 were stable at 35 °C for 24 h over a broader pH range of 3.0–9.0. We examined the feasibility of using steam pretreatment to increase the saccharification yields from various lignocellulosic residues for sugar release which can potentially be used in bioethanol production. Saccharification of pretreated dry potato peels, carrot peels, composite waste mixture, orange peels, onion peels, banana peels, pineapple peels by crude enzyme extract from A. niger NS-2, resulted in very high cellulose conversion efficiencies of 92–98 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhalla, A., Bansal, N., Kumar, S., Bischoff, K. M., & Sani, R. K. (2012). Bioresource Technology, 128, 751–759.

    Article  Google Scholar 

  2. Sohail, M., Siddiqi, R., Ahmed, A., & Khan, S. A. (2009). New Biotechnology, 25, 437–441.

    Article  CAS  Google Scholar 

  3. Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Bioresource Technology, 102, 60–65.

    Article  Google Scholar 

  4. Olofsson, K., Wiman, M., & Liden, G. (2010). Journal of Biotechnology, 145, 168–175.

    Article  CAS  Google Scholar 

  5. Bansal, N., Tewari, R., Gupta, J. K., Soni, S. K., & Soni, R. (2011). BioResources, 6, 552–569.

    CAS  Google Scholar 

  6. Pham, H., Dinh, T., Quyen, D. T., & Nghiem, N. M. (2010). Australian Journal of Basic and Applied Sciences, 4, 4151–4157.

    CAS  Google Scholar 

  7. Soni, S. K., & Soni, R. (2010). BioResources, 5, 81–98.

    CAS  Google Scholar 

  8. Berrin, J. G., Navarro, D., Couturier, M., Olivé, C., Grisel, S., Haon, M., et al. (2012). Applied and Environmental Microbiology, 78, 6483–6490.

    Article  CAS  Google Scholar 

  9. Dashtban, M., Schraft, H., & Qin, W. (2009). International Journal of Biological Sciences, 5, 578–595.

    Article  CAS  Google Scholar 

  10. Usama, F. A., & Hala, S. S. (2008). Applied Scientific Research, 4, 875–891.

    Google Scholar 

  11. Liu, D., Zhang, R., Yang, X., Wu, H., Xu, D., Tang, Z., et al. (2011). International Biodeterioration and Biodegradation, 65, 717–725.

    Article  CAS  Google Scholar 

  12. Raja, T. M., Muhammad, J. A., Nazia, M., Maria, M., Muhammad, G., Muhammad, A., et al. (2013). Applied Biochemistry and Biotechnology, 170, 895–908.

    Article  Google Scholar 

  13. André, L. G. L., Mariana, M. Q. O., Rodrigo, P. N., Elba, P. S. B., & Rosalie, R. R. C. (2013). Applied Biochemistry and Biotechnology, 169, 1373–1385.

    Article  Google Scholar 

  14. Marli, C., & Dillon, A. J. P. (2010). Applied Biochemistry and Biotechnology, 7, 1889–1900.

    Google Scholar 

  15. Gao, D., Uppugundla, N., Chundawat, S. P. S., Yu, X., Hermanson, S., Gowda, K., et al. (2011). Biotechnology Biofuel, 4, 5.

    Article  CAS  Google Scholar 

  16. Chang, J. J., Ho, F. J., Ho, C. Y., Wu, Y. C., Hou, Y. H., Huang, C. C., et al. (2013). Biotechnology Biofuel, 6, 19.

    Article  CAS  Google Scholar 

  17. Saqib, A. A. N., Hassan, M., Khan, F. K., & Baig, S. (2010). Process Biochemistry, 45, 641–664.

    Article  CAS  Google Scholar 

  18. Singhania, R., Sukumaran, R., Patel, A., Larroche, C., & Pandey, A. (2010). Enzyme and Microbial Technology, 46, 541–549.

    Article  CAS  Google Scholar 

  19. Bansal, N., Tewari, R., Soni, R., & Soni, S. K. (2012). Waste Management, 32, 1341–1346.

    Article  CAS  Google Scholar 

  20. Miller, G. L. (1959). Analytical Chemistry, 32, 426–428.

    Article  Google Scholar 

  21. Crampton, E. W., & Maynard, L. A. (1938). Journal of Nutrition, 15, 383–395.

    CAS  Google Scholar 

  22. Morin, L. G., & Prox, J. (1973). Clinical Chemistry, 19, 959–962.

    CAS  Google Scholar 

  23. Brijwani, K., Oberoi, H. S., & Vadlani, P. V. (2010). Process Biochemistry, 45, 120–1280.

    Article  CAS  Google Scholar 

  24. Ryu, D. D. Y., & Mandels, M. (1980). Enzyme and Microbial Technology, 2, 91–102.

    Article  CAS  Google Scholar 

  25. Gautam, S. P., Bundela, P. S., Pandey, A. K., Khan, J., Awasthi, M. K., & Sarsaiya, S. (2010). Biotechnology Research International, 1, 8–15.

    Google Scholar 

  26. Jabasingh, S. A., & Valli, N. C. (2011). Indian Journal of Science and Technology, 3, 871–878.

    Google Scholar 

  27. Kachlishvili, E., Penninckx, M. J., Tsiklauri, N., & Elisashvili, V. (2006). World Journal of Microbiology and Biotechnology, 22, 391–397.

    Article  CAS  Google Scholar 

  28. Sun, H., Ge, X., Hao, Z., & Peng, M. (2010). African Journal of Biotechnology, 9, 163–166.

    CAS  Google Scholar 

  29. Chellapandi, P., & Himanshu, M. J. (2008). Brazilian Journal of Microbiology, 39, 122–127.

    Article  CAS  Google Scholar 

  30. Malik, S. K., Mukhtar, H., Farooq, A. A., & Haq, I. (2010). Pakistan Journal of Botany, 42, 4243–4251.

    Google Scholar 

  31. Kang, S. W., Park, Y. S., Lee, J. S., Hong, S. I., & Kim, S. W. (2004). Bioresource Technology, 91, 153–156.

    Article  CAS  Google Scholar 

  32. Xiros, C., Topakas, E., Katapodis, P., & Christakopoulos, P. (2008). Bioresource Technology, 99, 5427–5435.

    Article  CAS  Google Scholar 

  33. Xin, F., & Geng, A. (2010). Applied Biochemistry and Biotechnology, 162, 295–306.

    Article  CAS  Google Scholar 

  34. Membrilo, I., Sánchez, C., Menese, M., Favela, E., & Loera, O. (2008). Bioresource Technology, 99, 7842–7847.

    Article  Google Scholar 

  35. Soni, S. K., Batra, N., Bansal, N., & Soni, R. (2010). BioResources, 5, 741–758.

    CAS  Google Scholar 

  36. Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Bioresource Technology, 99, 7623–7629.

    Article  CAS  Google Scholar 

  37. Dhillon, G. S., Oberoi, H. S., Kaur, S., Bansal, S., & Brar, S. K. (2011). Industrial Crops and Products, 34, 1160–1167.

    Article  CAS  Google Scholar 

  38. Mitchell, D. A., Krieger, N., Stuart, D. M., & Pandey, A. (2000). Process Biochemistry, 35, 1211–122.

    Article  CAS  Google Scholar 

  39. Oyekola, O. O., Ngesi, N., & Whiteley, C. G. (2007). Enzyme and Microbial Technology, 40, 637–644.

    Article  CAS  Google Scholar 

  40. Lynd, L. R., Weimer, P. J., Van, Z. W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.

    Article  CAS  Google Scholar 

  41. Siddiqui, K. S., Azhar, M. J., Rashid, M. H., & Rajoka, M. I. (1997). Folia Microbiologica, 42, 312–318.

    Article  CAS  Google Scholar 

  42. Javed, M. R., Rashid, M. H., Nadeem, H., Riaz, M., & Perveen, R. (2009). Applied Biochemistry and Biotechnology, 157, 483–497.

    Article  CAS  Google Scholar 

  43. Quiroz-Castañeda, R. E., Balcázar-López, E., Dantán-González, E., Mallol, A. M. J. F., & Anaya, C. M. (2009). Electronic Journal of Biotechnology, 12, 5–10.

    Google Scholar 

  44. Tang, L., Wei, W., Yang, Y. W., Deng, W., & Li, Z. (2010). Indian Journal of Biochemistry & Biophysics, 47, 348–352.

    CAS  Google Scholar 

  45. Kim, D. W., Jang, Y. H., Kim, C. S., & Lee, N. S. (2001). Bulletin of the Korean Chemical Society, 22, 716–720.

    CAS  Google Scholar 

  46. Kovacs, K., Macrelli, S., Szakacs, G., & Zacchi, G. (2009). Biotechnolology Biofuel, 2, 14.

    Article  Google Scholar 

  47. Li, A., Antizar-Ladislao, B., & Khraisheh, M. (2007). Bioprocess and Biosystems Engineering, 30, 189–196.

    Article  Google Scholar 

  48. Ruiz, E., Cara, C., Manzanares, P., Ballesteros, M., & Castro, E. (2008). Enzyme and Microbial Technology, 42, 160–166.

    Article  CAS  Google Scholar 

  49. Negro, M. J., Manzanares, P., Ballesteros, I., Oliva, J. M., Cabañas, A., & Ballesteros, M. (2003). Applied Biochemistry and Biotechnology, 105, 87–100.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by University Grants Commission, New Delhi, under the special assistance programme (SAP) and by the Department of Science & Technology, Government of India under PURSE grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Soni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bansal, N., Janveja, C., Tewari, R. et al. Highly Thermostable and pH-Stable Cellulases from Aspergillus niger NS-2: Properties and Application for Cellulose Hydrolysis. Appl Biochem Biotechnol 172, 141–156 (2014). https://doi.org/10.1007/s12010-013-0511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0511-9

Keywords

Navigation