Skip to main content
Log in

Solid-State Fermentation of Rapeseed Meal with the White-Rot Fungi Trametes versicolor and Pleurotus ostreatus

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Rapeseed meal is valuable high-protein forage, but its nutritional value is significantly reduced by the presence of a number of antinutrients, including phenolic compounds. Solid-state fermentation with white-rot fungi was used to decrease the sinapic acid concentration of rapeseed meal. After 7 days of growth of Trametes versicolor and Pleurotus ostreatus, the sinapic acid content of rapeseed meal was reduced by 59.9 and 74.5 %, respectively. At the end of the experiment, sinapic acid concentration of T. versicolor cultures decreased by 93 % of the initial value; in the case of cultures of P. ostreatus, 93.2 % reduction was observed. Moreover, cultivation of white-rot fungi on rapeseed meal resulted in the intensive production of extracellular laccase, particularly strong during the late phases of growth of T. versicolor. The obtained results confirm that both fungal species may effectively be used to decompose antinutritional phenolics of rapeseed meal. Rapeseed meal may also find use as an inexpensive and efficient substrate for a biotechnological production of laccase by white-rot fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bell, J. M. (1984). Journal of Animal Science, 58, 996–1010.

    CAS  Google Scholar 

  2. Burel, C., Boujard, T., Tulli, F., & Kaushik, S. J. (2000). Aquaculture, 188, 285–298.

    Article  Google Scholar 

  3. Vioque, J., Sánchez-Vioque, R., Clemente, A., Pedroche, J., & Millán, F. (2000). Journal of the American Oil Chemists' Society, 77, 447–450.

    Article  CAS  Google Scholar 

  4. Vuorela, S., Meyer, A. S., & Heinonen, M. (2004). Journal of Agricultural and Food Chemistry, 52, 8202–8207.

    Article  CAS  Google Scholar 

  5. Shahidi, F., & Naczk, M. (1992). Journal of the American Oil Chemists' Society, 69, 917–924.

    Article  CAS  Google Scholar 

  6. Khattab, R., Eskin, M., Aliani, M., & Thiyam, U. (2010). Journal of the American Oil Chemists' Society, 87, 147–155.

    Article  CAS  Google Scholar 

  7. Lacki, K., & Duvnjak, Z. (1999). Biotechnology and Bioengineering, 62, 422–433.

    Article  CAS  Google Scholar 

  8. Kirk, T. K., & Cullen, D. (1998). In R. A. Young & M. Akhtar (Eds.), Environmentally friendly technologies for the pulp and paper industry (pp. 237–307). New York: Wiley.

    Google Scholar 

  9. Shah, V., & Nerud, F. (2002). Canadian Journal of Microbiology, 48, 857–870.

    Article  CAS  Google Scholar 

  10. Isroi, Millati, R., Syamsiah, S., Niklasson, C., Cahyanto, M. N., Lundquist, K., & Taherzadeh, M. J. (2011). BioResources, 6, 5224–5259.

    Google Scholar 

  11. Hu, J., & Duvnjak, Z. (2004). Engineering in Life Sciences, 4, 50–55.

    Article  CAS  Google Scholar 

  12. Smith, J. E., Rowan, N. J., & Sullivan, R. (2002). Biotechnology Letters, 24, 1839–1845.

    Article  CAS  Google Scholar 

  13. Lindeberg, G., & Holm, G. (1952). Physiologia Plantarum, 5, 100–114.

    Article  Google Scholar 

  14. Thiyam, U., Stöckmann, H., & Schwarz, K. (2006). Journal of the American Oil Chemists' Society, 83, 523–528.

    Article  CAS  Google Scholar 

  15. Lundell, T., Leonowicz, A., Rogalski, J., & Hatakka, A. (1990). Applied and Environmental Microbiology, 56, 3515–3520.

    Google Scholar 

  16. Jaszek, M., Żuchowski, J., Dajczak, K., Cimek, M., Grąz, M., & Grzywnowicz, K. (2006). International Biodeterioration & Biodegradation, 58, 168–175.

    Article  CAS  Google Scholar 

  17. Kwang-Soo, S., & Chang-Jin, K. (1998). Biotechnology Techniques, 12, 101–104.

    Article  Google Scholar 

  18. Lacki, K., & Duvnjak, Z. (1998). Biotechnology and Bioengineering, 57, 694–703.

    Article  CAS  Google Scholar 

  19. Koroleva, O. V., Gavrilova, V. P., Stepanova, E. V., Lebedeva, V. I., Sverdlova, N. I., Landesman, E. O., Yavmetdinov, I. S., & Yaropolov, A. I. (2002). Enzyme and Microbial Technology, 30, 573–580.

    Article  CAS  Google Scholar 

  20. Bau, H.-M., Villaume, C., Lin, C.-F., Evrard, J., Quemener, B., Nicolas, J.-P., & Méjean, L. (1994). Journal of the Science of Food and Agriculture, 65, 315–322.

    Article  CAS  Google Scholar 

  21. Vig, A. P., & Walia, A. (2001). Bioresources Technology, 78, 309–312.

    Article  CAS  Google Scholar 

  22. Al-Asheh, S., & Duvnjak, Z. (1995). World Journal of Microbiology and Biotechnology, 11, 228–231.

    Article  CAS  Google Scholar 

  23. El-Batal, A. I., & Abdel Karem, H. (2001). Food Research International, 34, 715–720.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Jerzy Rogalski for his kind consent for the use of fungal strains from the culture collection of the Department of Biochemistry, M. Curie-Skłodowska University in Lublin, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Żuchowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Żuchowski, J., Pecio, Ł., Jaszek, M. et al. Solid-State Fermentation of Rapeseed Meal with the White-Rot Fungi Trametes versicolor and Pleurotus ostreatus . Appl Biochem Biotechnol 171, 2075–2081 (2013). https://doi.org/10.1007/s12010-013-0506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0506-6

Keywords

Navigation