Skip to main content
Log in

Effect of Microalgae/Activated Sludge Ratio on Cooperative Treatment of Anaerobic Effluent of Municipal Wastewater

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, capability of the green microalga (MA), Chlorella vulgaris, in treating synthetic anaerobic effluent of municipal wastewater was investigated. While pure C. vulgaris (100 % MA) provided maximum soluble chemical oxygen demand (sCOD) and N − NH +4 removal efficiencies of 27 and 72 % respectively, addition of activated sludge (AS) to MA in different mass ratios (91, 80, 66.7, 9 % MA) improved wastewater treatment efficiency. Thus giving maximum sCOD and N − NH +4 removal efficiencies 85 and 86.3 % (for MA/AS = 10/1), respectively. Utilizing AS without C. vulgaris, for treating the synthetic wastewater resulted in 87 % maximum sCOD and 42 % maximum N − NH +4 removal efficiencies. Furthermore, algal growth and specific growth rates were measured in the systems with microalga as the dominant cellular population. As a result, faster algal growth was observed in mixed systems. Specific growth rate of C. vulgaris was 0.14 (day−1) in 100 % MA and 0.39 (day−1) in 80 % MA. Finally, data gathered by online measurement of dissolved oxygen indicate that algae-activated sludge mixture improves photosynthetic activity of examined microalga strain during anaerobic effluent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AS:

Activated Sludge

C. vulgaris :

Chlorella vulgaris

DO:

Dissolved Oxygen

MA:

Microalgae

μ:

Microalgal Specific Growth Rate

sCOD:

Soluble Chemical Oxygen Demand

t:

Operational Time

WWT:

Wastewater Treatment

References

  1. de-Godos, I., Vargas, V. A., Blanco, S., García González, M. C., Soto, R., García-Encina, P. A., et al. (2010). Bioresource Technology, 101, 5150–5158.

    Article  CAS  Google Scholar 

  2. Di Termini, I., Prassone, A., Cattaneo, C., & Rovatti, M. (2011). Ecological Engineering, 37, 976–980.

    Article  Google Scholar 

  3. Munoz, R., & Guieysse, B. (2006). Water Research, 40, 2799–2815.

    Article  CAS  Google Scholar 

  4. Medina, M., & Neis, U. (2007). Water Science Technology, 55, 165–171.

    Article  CAS  Google Scholar 

  5. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2011). Applied Energy, 88, 411–3424.

    Article  Google Scholar 

  6. Munoz, R., Kollner, C., Guieysse, B., & Mattiasson, B. (2004). Biotechnology Bioengineering, 6, 797–803.

    Article  Google Scholar 

  7. Chen, C., Yeh, K., Aisyah, R., Lee, D., & Chang, J. (2011). Bioresource Technology, 102, 71–81.

    Article  CAS  Google Scholar 

  8. Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.

    Article  CAS  Google Scholar 

  9. Perez-Garcia, O., Escalante, F. M., De-Bashan, L. E., & Bashan, Y. (2011). Water Research, 45, 11–36.

    Article  CAS  Google Scholar 

  10. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., et al. (2010). Applied Biochemistry and Biotechnology, 162, 1174–1186.

    Article  CAS  Google Scholar 

  11. McGinn, P. J., Dickinson, K. E., Park, K. C., Whitney, C. G., MacQuarrie, S. P., Black, F. J., et al. (2012). Algal Research, 1, 155–165.

    Article  Google Scholar 

  12. Kim, J., Lingaraju, B., Rheaume, R., Lee, J., & Siddiqui, K. (2010). Tsinghua Science and Technology, 15, 391–396.

    Article  CAS  Google Scholar 

  13. Aslan, S., & Kapdan, I. (2006). Ecological Engineering, 28, 64–70.

    Article  Google Scholar 

  14. Borowitzka, M. A. (1988). In M. A. Borowitzka & L. J. Borowitzka (Eds.), Micro-algal Biotechnology, (456–465): algal growth media and sources of algal cultures (pp. 456–465). Cambridge: Cambridge University Press.

    Google Scholar 

  15. Martinez-Sosa, D., Helmreich, B., & Horn, H. (2012). Process Biochemistry, 47, 792–798.

    Article  CAS  Google Scholar 

  16. Riahi, K., Mammou, A. B., & Thayer, B. B. (2009). Journal of Hazardous Material, 161, 608–613.

    Article  CAS  Google Scholar 

  17. Akila, G., & Chandra, T. S. (2007). Process Biochemistry, 42, 466–471.

    Article  CAS  Google Scholar 

  18. Tawfik, A., Sobhey, M., & Badawy, M. (2008). Desalination, 227, 167–177.

    Article  CAS  Google Scholar 

  19. Prieto, A.L. (2011), PhD thesis, University of South Florida, South Florida, USA.

  20. Kassab, G., Halalsheh, M., Klapwijk, A. F., & van Lier, J. (2010). Bioresource Technology, 101, 3299–3310.

    Article  CAS  Google Scholar 

  21. APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). New York: American Public Health Association.

    Google Scholar 

  22. Travieso Córdoba, L. Domínguez Bocanegra, A.R. Rincón Llorente, B. Sánchez Hernández, E. Benítez Echegoyen, F. Borja, R. Raposo Bejines, F. and Colmenarejo Morcillo, M.F. Electronic Journal of Biotechnology [online]. 15 April 2008, vol. 11, no. 2 [cited date]. Available from Internet: http://www.ejbiotechnology.cl/content/vol11/issue2/full/1/index.html. ISSN 0717–3458. DOI: 10.2225/vol11-issue2-fulltext-1.

  23. González-Fernández, C., Molinuevo-Salces, B., & García-González, M. C. (2011). Bioresource Technology, 102, 960–966.

    Article  Google Scholar 

  24. Gonzalez, L. E., Canizares, R. O., & Baena, S. (1997). Bioresource Technology, 60, 259–262.

    Article  CAS  Google Scholar 

  25. Ruiz-Marin, A., Mendoza-Espinosa, L., & Stephenson, T. (2010). Bioresource Technology, 101, 58–64.

    Article  CAS  Google Scholar 

  26. Shi, J., Podola, B., & Melkonian, M. (2007). Journal of Applied Phycology, 5, 417–423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Mehrnia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roudsari, F.P., Mehrnia, M.R., Asadi, A. et al. Effect of Microalgae/Activated Sludge Ratio on Cooperative Treatment of Anaerobic Effluent of Municipal Wastewater. Appl Biochem Biotechnol 172, 131–140 (2014). https://doi.org/10.1007/s12010-013-0480-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0480-z

Keywords

Navigation