Applied Biochemistry and Biotechnology

, Volume 172, Issue 1, pp 405–422 | Cite as

Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing

  • N. C. Boelee
  • M. Janssen
  • H. Temmink
  • R. Shrestha
  • C. J. N. Buisman
  • R. H. Wijffels
Article

Abstract

An innovative pilot-scale phototrophic biofilm reactor was evaluated over a 5-month period to determine its capacity to remove nitrogen and phosphorus from Dutch municipal wastewater effluents. The areal biomass production rate ranged between 2.7 and 4.5 g dry weight/m2/day. The areal nitrogen and phosphorus removal rates averaged 0.13 g N/m2/day and 0.023 g P/m2/day, which are low compared to removal rates achieved in laboratory biofilm reactors. Nutrient removal increased during the day, decreased with decreasing light intensity and no removal occurred during the night. Additional carbon dioxide supply was not requisite as the wastewater was comprised of enough inorganic carbon to sustain microalgal growth. The study was not conclusive for the limiting factor that caused the low nutrient removal rate, possibly the process was limited by light and temperature, in combination with pH increases above pH 9 during the daytime. This pilot-scale study demonstrated that the proposed phototrophic biofilm reactor is not a viable post-treatment of municipal wastewater effluents under Dutch climate conditions. However, the reactor performance may be improved when controlling the pH and the temperatures in the morning. With these adaptations, a phototrophic biofilm reactor could be feasible at lower latitudes with higher irradiance levels.

Keywords

Microalgae Biofilm Wastewater treatment Nitrogen removal Phosphorus removal 

Notes

Acknowledgments

This work was performed in the TTIW-cooperation framework of Wetsus, Centre of Excellence for Sustainable Water Technology (www.wetsus.nl). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union Regional Development Fund, the Province of Fryslân, the City of Leeuwarden and the EZ/Kompas program of the “Samenwerkingsverband Noord-Nederland”. The authors like to thank the participants of the research theme “Advanced waste water treatment” and the steering committee of STOWA for the fruitful discussions and their financial support. The authors also thank J. Tuinstra and W. Borgonje for their help building the pilot, R. Loos, R. Khiewwijit, J. Tessiaut, and L. Taparavičiūtė for their help operating the pilot and K. Sukacova for the taxonomical analysis.

Supplementary material

12010_2013_478_MOESM1_ESM.doc (113 kb)
ESM 1 (DOC 113 kb)

References

  1. 1.
    Roeselers, G., Loosdrecht, M., & Muyzer, G. (2008). Journal of Applied Phycology, 20, 227–235.CrossRefGoogle Scholar
  2. 2.
    Schumacher, G., Blume, T., & Sekoulov, I. (2003). Water Sci Technol, 47, 195–202.Google Scholar
  3. 3.
    De Godos, I., González, C., Becares, E., García-Encina, P., & Muñoz, R. (2009). Appl Microbiol Biotechnol, 82, 187–194.CrossRefGoogle Scholar
  4. 4.
    Shi, J., Podola, B., & Melkonian, M. (2007). Journal of Applied Phycology, 19, 417–423.CrossRefGoogle Scholar
  5. 5.
    González, C., Marciniak, J., Villaverde, S., León, C., García, P. A., & Munoz, R. (2008). Water Sci Technol, 58, 95–102.CrossRefGoogle Scholar
  6. 6.
    Halterman, S. G., & Toetz, D. W. (1984). Hydrobiologia, 114, 209–214.CrossRefGoogle Scholar
  7. 7.
    Collos, Y., Vaquer, A., & Souchu, P. (2005). J Phycol, 41, 466–478.CrossRefGoogle Scholar
  8. 8.
    Eppley, R. W., Rogers, J. N., & McCarthy, J. J. (1969). Limnol Oceanogr, 14, 912–920.CrossRefGoogle Scholar
  9. 9.
    Hwang, S.-J., Havens, K. E., & Steinman, A. D. (1998). Freshwater Biology, 40, 729–745.CrossRefGoogle Scholar
  10. 10.
    Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N., & Wijffels, R. H. (2011). Water Res, 45, 5925–5933.CrossRefGoogle Scholar
  11. 11.
    Lacour, T., Sciandra, A., Talec, A., & Mayzaud, P. (2012). J Phycol, 48, 966–975.CrossRefGoogle Scholar
  12. 12.
    Needoba, J. A., & Harrison, P. J. (2004). J Phycol, 40, 505–516.CrossRefGoogle Scholar
  13. 13.
    Ahn, C.-Y., Chung, A.-S., & Oh, H.-M. (2002). J Phycol, 38, 695–704.CrossRefGoogle Scholar
  14. 14.
    Vincent, W. F. (1992). Hydrobiologia, 238, 37–52.CrossRefGoogle Scholar
  15. 15.
    Jansson, M. (1988). Hydrobiologia, 170, 177–189.CrossRefGoogle Scholar
  16. 16.
    Clark, D. R., Flynn, K. J., & Owens, N. J. P. (2002). New Phytologist, 155, 101–108.CrossRefGoogle Scholar
  17. 17.
    Vona, V., Rigano, V. D. M., Esposito, S., Carillo, P., Carfagna, S., & Rigano, C. (1999). Physiol Plant, 105, 288–293.CrossRefGoogle Scholar
  18. 18.
    Hill, W. (1996) In Algal ecology: Freshwater benthic ecosystems, (Stevenson, R.J.; Bothwell, M.L.; Lowe, R.L., eds.) Academic: pp 121–148.Google Scholar
  19. 19.
    Muñoz, R., Köllner, C., & Guieysse, B. (2009). J Hazard Mater, 161, 29–34.CrossRefGoogle Scholar
  20. 20.
    Ras, M., Steyer, J.-P., & Bernard, O. (2013). Reviews in Environmental Science and Bio/Technology, 12, 153–164.CrossRefGoogle Scholar
  21. 21.
    Wolf, G., Picioreanu, C., & van Loosdrecht, M. C. M. (2007). Biotechnol Bioeng, 97, 1064–1079.CrossRefGoogle Scholar
  22. 22.
    Liehr, S. K., Suidan, M. T., & Eheart, J. W. (1990). Biotechnol Bioeng, 35, 233–243.CrossRefGoogle Scholar
  23. 23.
    Boelee, N.C.,Janssen, M.,Temmink, H.,Taparavičiūtė, L.,Khiewwijit, R.,Jánoska, A.,Buisman, C.J.N. and Wijffels, R.H. (2013), accepted for publication in Journal of Applied Phycology.Google Scholar
  24. 24.
    Duboc, P.,Marison, I. and Stockar, U.v. (1999) In Handbook of thermal analysis and calorimetry (Kemp, R.B., Vol. 4, pp 287–309).Google Scholar
  25. 25.
    Davis, L. S., Hoffmann, J. P., & Cook, P. W. (1990). J Phycol, 26, 611–617.CrossRefGoogle Scholar
  26. 26.
    Congestri, R., Di Pippo, F., De Philippis, R., Buttino, I., Paradossi, G., & Albertano, P. (2006). Aquat Microb Ecol, 45, 301–312.CrossRefGoogle Scholar
  27. 27.
    Healey, F. P. (1973). Critical reviews in microbiology, 3, 69–113.CrossRefGoogle Scholar
  28. 28.
    Temman, M., Paquette, J., & Vali, H. (2000). Geochim Cosmochim Acta, 64, 2417–2430.CrossRefGoogle Scholar
  29. 29.
    Lorens, R. B. (1981). Geochim Cosmochim Acta, 45, 553–561.CrossRefGoogle Scholar
  30. 30.
    Picot, B., Moersidik, S., Casellas, C., & Bontoux, J. (1993). Water Science & Technology, 28, 169–175.Google Scholar
  31. 31.
    Arbib, Z., Ruiz, J., Álvarez-Díaz, P., Garrido-Pérez, C., Barragan, J., & Perales, J. A. (2013). Ecol Eng, 52, 143–153.CrossRefGoogle Scholar
  32. 32.
    Craggs, R., Sutherland, D., & Campbell, H. (2012). Journal of Applied Phycology, 24, 329–337.CrossRefGoogle Scholar
  33. 33.
    Olguín, E. J., Galicia, S., Mercado, G., & Peréz, T. (2003). Journal of Applied Phycology, 15, 249–257.CrossRefGoogle Scholar
  34. 34.
    Hulatt, C. J., & Thomas, D. N. (2011). Bioresource technology, 102, 6687–6695.CrossRefGoogle Scholar
  35. 35.
    Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., Zhou, W., Chen, P., & Ruan, R. (2011). Appl Biochem Biotechnol, 165, 123–137.CrossRefGoogle Scholar
  36. 36.
    Chisti, Y. (2007). Biotechnol Adv, 25, 294–306.CrossRefGoogle Scholar
  37. 37.
    Brennan, L. and Owende, P. (2010) Renewable and sustainable energy reviews 14Google Scholar
  38. 38.
    Norsker, N.-H., Barbosa, M. J., Vermuë, M. H., & Wijffels, R. H. (2011). Biotechnol Adv, 29, 24–27.CrossRefGoogle Scholar
  39. 39.
    Metcalf & Eddy, I. (2003) Wastewater engineering: treatment and reuse. (4th ed.), McGraw-HillGoogle Scholar
  40. 40.
    Pérez, J., Picioreanu, C., & Van Loosdrecht, M. (2005). Water Res, 39, 1311–1323.CrossRefGoogle Scholar
  41. 41.
    Azov, Y., Shelef, G., & Moraine, R. (1982). Biotechnol Bioeng, 24, 579–594.CrossRefGoogle Scholar
  42. 42.
    Heubeck, S., Craggs, R. J., & Shilton, A. (2007). Water Sci Technol, 55, 193–200.CrossRefGoogle Scholar
  43. 43.
    Andersen, R.A. (2005) Algal culturing techniques. Elsevier: p 578Google Scholar
  44. 44.
    Dauta, A., Devaux, J., Piquemal, F., & Boumnich, L. (1990). Hydrobiologia, 207, 221–226.CrossRefGoogle Scholar
  45. 45.
    Reay, D. S., Nedwell, D. B., Priddle, J., & Ellis-Evans, J. C. (1999). Appl Environ Microbiol, 65, 2577–2584.Google Scholar
  46. 46.
    Powell, N., Shilton, A. N., Pratt, S., & Chisti, Y. (2008). Environ Sci Technol, 42, 5958–5962.CrossRefGoogle Scholar
  47. 47.
    Martínez, M. E., Jiménez, J. M., & El Yousfi, F. (1999). Bioresour Technol, 67, 233–240.CrossRefGoogle Scholar
  48. 48.
    KNMI (2013) Daggegevens van het weer in Nederland. http://www.knmi.nl/kd/daggegevens/download.html (February)
  49. 49.
    Clegg, M., Gaedke, U., Boehrer, B., & Spijkerman, E. (2012). Oecologia, 169, 609–622.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. C. Boelee
    • 1
    • 2
    • 3
  • M. Janssen
    • 1
    • 2
  • H. Temmink
    • 1
    • 3
  • R. Shrestha
    • 1
  • C. J. N. Buisman
    • 1
    • 3
  • R. H. Wijffels
    • 2
  1. 1.Wetsus—Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
  2. 2.Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenThe Netherlands
  3. 3.Sub-department of Environmental technologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations