Skip to main content
Log in

Combined Mesophilic Anaerobic and Thermophilic Aerobic Digestion Process: Effect on Sludge Degradation and Variation of Sludge Property

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One-stage autothermal thermophilic aerobic digestion (ATAD) is effective for the reduction of volatile solids (VSs) and pathogen in sewage sludges. A novel process of combining mesophilic (<35 °C) anaerobic digestion with a thermophilic (55 °C) aerobic digestion process (AN/TAD) occurred in a one-stage digester, which was designed for aeration energy savings. The efficiency of sludge degradation and variation of sludge properties by batch experiments were evaluated for the AN/TAD digester with an effective volume of 23 L for 30 days compared with conventional thermophilic aerobic digestion (TAD). The AN/TAD system can efficiently achieve sludge stabilization on the 16th day with a VS removal rate of 38.1 %. The AN/TAD system was operated at lower ORP values in a digestion period with higher contents of total organic compounds, volatile fatty acids, protein, and polysaccharide in the soluble phase than those of the TAD system, which can rapidly decreased and had low values in the late period of digestion for the AN/TAD system. In the AN/TAD system, intracellular substances had lysis because of initial hydrolytic acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kelly, H. G., Melcer, H., & Mavinic, D. S. (1993). Water Environment Research, 65, 849–861.

    Article  CAS  Google Scholar 

  2. Schwinning, H. G., Deeny, K. J., & Hong, S. N. (1997). Proceedings of the 70th Water Environment Federation Annual Conference and Exposition, Chicago, IL, USA.

  3. Pagilla, K., Kim, H., & Cheunbarn, T. (2000). Water Research, 34, 2747–2753.

    Article  CAS  Google Scholar 

  4. Kelly, H. G., & Mavinic, D. S. (2003). WEFTEC 2003 Workshop W104 Thermophilic Digestion, Los Angeles.

  5. Layden, M. N., Mavinic, D. S., Kelly, H. G., Moles, R., & Bartlett, J. (2007). Journal of Environmental Engineering and Science, 6, 665–678.

    Article  CAS  Google Scholar 

  6. Nosrati, M., Sreekrishnan, T. R., & Mukhopadhyay, S. N. (2007). Journal of Environmental Engineering, 133, 477–484.

    Article  CAS  Google Scholar 

  7. Cheng, J. H. (2006). The Study of Sewage Sludge Treatment by Autothermal Thermophilic (Micro) Aerobic Digestion Process, Ph.D. diss., Tongji University

  8. Cheng, J. H., Zhang, Y. Y., Zhu, N. W., & Liu, S. G. (2011). Advanced Materials Research, 236–238, 437–440.

    Article  Google Scholar 

  9. Liu, S. G., Zhu, N. W., & Li, L. Y. (2011). Chemical Engineering Journal, 174, 564–570.

    Article  CAS  Google Scholar 

  10. Zhu, N. W., Lin, J. M., Cheng, H., Zhang, S. F., Jia, J.P., Cheng, J. H. & Feng, L. (2005). China Patent CN1587110.

  11. Cheng, J. H., Zhou, Q. F., & Zhu, N. W. (2009). Research Journal of Environmental Science (China), 22, 484–489.

    CAS  Google Scholar 

  12. Zhao, Q., & Kugel, G. (1996). Environmental Science and Health, 31, 2211–2231.

    Google Scholar 

  13. Borowski, S., & Szopa Józef, S. (2007). Bioresource Technology, 98, 1199–1207.

    Article  CAS  Google Scholar 

  14. Lee, Y.-S., & Han, G.-B. (2012). Biosystems Engineering, 111, 243–250.

    Article  Google Scholar 

  15. Staton, K. L., Alleman, J. E., Pressley, R. L., Eloff, J. (2001). WEF/AWWA/CWEA Joint Residuals and Biosolids Management Conference, San Diego, American.

  16. APHA., AWWA., WEF (2005) Standard Methods for the Examination of Water and Wastewater, 21th edition. Washington DC: APHA/AWWA/WEF.

  17. Haner, A., Mason, C. A., & Hamer, G. (1994). Water Research, 28, 863–869.

    Article  Google Scholar 

  18. Banat, F. A., Precht, S. B., & Bischof, F. (1999). Chemosphere, 39, 2097–2106.

    Article  CAS  Google Scholar 

  19. SEPAC. (2002). Analytical and monitoring methods of water and wastewater (4th ed.). Beijing: China Environmental Science Press. 10–213, 254–257, 704–710.

    Google Scholar 

  20. US EPA CFR 40 PART 503 (1993) Standards for the Use or Disposal of Sewage Sludge. Washington: US EPA

  21. Chang, C. N., Ma, Y. S., & Lo, C. W. (2002). Chemical Engineering Journal, 90, 273–281.

    Article  CAS  Google Scholar 

  22. Fothergill, S., & Mavinic, D. S. (2000). Journal of Environmental Engineering, 126, 389–396.

    Article  CAS  Google Scholar 

  23. Layden, M. N., Kelly, H. G., Mavinic, D. S., Moles, R., & Bartlett, J. (2007). Journal of Environmental Engineering and Science, 6, 679–690.

    Article  CAS  Google Scholar 

  24. Piterina, A. V., John, B., & Tony Pembroke, J. (2012). Water Research, 46, 2488–2504.

    Article  CAS  Google Scholar 

  25. Mavinic, D. S., Mahendraker, V., Sharma, A., & Kelly, H. G. (2001). Journal of Environmental Engineering, 127, 311–316.

    Article  CAS  Google Scholar 

  26. Chu, A., Mavinic, D. S., Ramey, W. D., & Kelly, H. G. (1996). Water Research, 30, 1759–1770.

    Article  CAS  Google Scholar 

  27. Van Loosdrecht, M. C. M., & Henze, M. (1999). Water Science and Technology, 39, 107–117.

    Article  Google Scholar 

  28. Liu, S. G., Song, F. Y., Zhu, N. W., Yuan, H. P., & Cheng, J. H. (2010). Bioresource Technology, 101, 9438–9444.

    Article  CAS  Google Scholar 

  29. Ugwuanyi, J. O., Harvey, L. M., & Mcneil, B. (1999). Journal of Applied Microbiology, 87, 387–395.

    Article  CAS  Google Scholar 

  30. Rojas, J., & Zhelev, T. (2012). Computers and Chemical Engineering, 38, 52–63.

    Article  CAS  Google Scholar 

  31. Tiquia, S. M., Tam, N. F. Y., & Hodgekiss, I. J. (1996). Bioresource Technology, 55, 201–206.

    Article  CAS  Google Scholar 

  32. Chauzy, J., Cretenot, D., Bausseron, A., Gokelaere, X. (2007). Proceedings of the WEFTEC.

  33. Banat, F. A., Precht, S. B., & Bischof, F. (2000). Chemosphere, 41, 297–302.

    Article  CAS  Google Scholar 

  34. Scholz, M. (2005). Industrial and Engineering Chemistry Research, 44, 8157–8163.

    Article  CAS  Google Scholar 

  35. Mahmoud, N., Zeeman, G., Gijzen, H., & Gatze, L. (2004). Water Research, 38, 983–991.

    Article  CAS  Google Scholar 

  36. Li, X., Ma, H., Wang, Q., Matsumoto, S., Maeda, T., & Ogawa, H. (2009). Bioresource Technology, 100, 2475–2481.

    Article  CAS  Google Scholar 

  37. Zhou, J. P. (2003). Factors Influencing Dewaterability of Thermophilic Aerobically Digested Biosolids, Ph.D. diss., University of British Columbia.

  38. Bolzonella, D., Cavinato, C., Fatone, F., Pavan, P., & Cecchi, F. (2012). Waste Management, 32, 1196–1201.

    Article  CAS  Google Scholar 

  39. Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Bioresource Technology, 99, 4817–4824.

    Article  CAS  Google Scholar 

  40. Marti, N., Bouzas, A., Seco, A., & Ferrer, J. (2008). Chemical Engineering Journal, 141, 67–74.

    Article  CAS  Google Scholar 

  41. Rohan, J., Ashish, P., Sreekrishnan, T. R., & Dastidar, M. G. (2010). Journal of Environmental Sciences, 22, 230–236.

    Article  Google Scholar 

  42. Chen, S. Y., & Pan, S. H. (2010). Journal of Hazardous Materials, 179, 340–347.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Jiangsu Overseas Research and Training Program for University Prominent Young and Middle-aged Teachers and Presidents, the Item of Jiangsu Province “333 Hi-class personnel training project” (no. BRA2011185), and the Environmental Protection Agency of Jiangsu Province (no. 2008020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehong Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, J., Ji, Y., Kong, F. et al. Combined Mesophilic Anaerobic and Thermophilic Aerobic Digestion Process: Effect on Sludge Degradation and Variation of Sludge Property. Appl Biochem Biotechnol 171, 1701–1714 (2013). https://doi.org/10.1007/s12010-013-0453-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0453-2

Keywords

Navigation