Effect of Phosphate on Glucosamine Production by Ethanolic Fungus Mucor indicus


In this study, the effect of phosphorous compound concentration on the production of glucosamine by Mucor indicus was investigated. Changes in the yield of ethanol, the major metabolite of the fungus, were also followed besides. The alkali insoluble material of the biomass of the fungus mainly contained phosphates and polymers of glucosamine and N-acetyl glucosamine, i.e., chitin and chitosan. Yields of glucosamine (78–113 g/kg dry fungal biomass) and ethanol (200–370 g/kg glucose) were significantly affected by the phosphorous concentration. The results showed that lower concentrations of phosphorous favored the production of glucosamine while higher ethanol as well as biomass yields was obtained at higher concentrations. The best concentration was 0.5 g/l where glucosamine yield was 0.37 g/l (11 % of the biomass). At this phosphate concentration, ethanol and biomass yields were 360 and 76 g/kg glucose, respectively. On average, proteins comprised 51.5 % of the biomass. Glycerol was the second important metabolite during the fermentation by the fungus which appeared at lower yields (20–34 g/kg glucose).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Sitanggang, A. B., Sophia, L., & Wu, H. S. (2012). International journal of Food Microbiology, 19, 393–404.

    CAS  Google Scholar 

  2. 2.

    Martin Xavier, KA., Ramachandran, KG. (2006). Standardization of optimum conditions for the production of glucosamine hydrochloride from chitin. PhD thesis, Cochin University of Science and Technology.

  3. 3.

    Sitanggang, A. B., Wu, H. S., Wang, S. S., & Ho, Y. C. (2010). Bioresource Technology, 101, 3595–3601.

    Article  CAS  Google Scholar 

  4. 4.

    Zamani, A., Edebo, L., Niklasson, C., & Taherzadeh, M. J. (2010). International Journal of Molecular Sciences, 11, 2976–2987.

    Article  CAS  Google Scholar 

  5. 5.

    Zamani, A., Edebo, L., Sjöström, B., & Taherzadeh, M. J. (2007). Biomacromolecules, 8, 3786–3790.

    Article  CAS  Google Scholar 

  6. 6.

    Rane, K. D., & Hoover, D. G. (1993). Process Biochemistry, 28, 115–118.

    Article  CAS  Google Scholar 

  7. 7.

    Ruiz-Herrera, J. (1992). Fungal cell wall: structure, synthesis, and assembly (p. 248). Boca Raton: CRC Press.

    Google Scholar 

  8. 8.

    Karimi, K., & Zamani, A. (2013). Mucor indicus: biology and industrial application perspectives: a review. Biotechnology Advances, 31, 466–481.

    Article  CAS  Google Scholar 

  9. 9.

    Edebo, L. (2009). Zygomycetes for fish feed. US Patent 01336617, Sweden

  10. 10.

    Lennartsson, P. R., Karimi, K., Edebo, L., & Taherzadeh, M. J. (2009). Journal of Biotechnology, 143, 255–261.

    Article  CAS  Google Scholar 

  11. 11.

    Sharifia, M., Karimi, K., & Taherzadeh, M. J. (2008). Journal of Industrial Microbiology and Biotechnology, 35, 1253–1259.

    Article  CAS  Google Scholar 

  12. 12.

    Mohammadi, M., Zamani, A., & Karimi, K. (2012). Journal of Agricultural and Food Chemistry, 60, 10511–10515.

    Article  CAS  Google Scholar 

  13. 13.

    Zamani, A., Jeyhanipour, A., Edebo, L., Niklasson, C., & Taherzadeh, M. J. J. (2008). Agricultural and Food Chemistry, 56, 8314–8318.

    Article  CAS  Google Scholar 

  14. 14.

    Verduyn, C., Postma, E., Scheffers, W. A., & van Dijken, J. P. (1990). Journal of General Microbiology, 136, 395–403.

    Article  CAS  Google Scholar 

  15. 15.

    ISO (2005) SS-EN ISO 6878 Water quality, determination of phosphorus, ammonium molybdate spectrometric method

  16. 16.

    Ng, C.-H., Hein, S., Ogawa, K., Chandrkrachang, S., & Stevens, W. F. (2007). Carbohydrate Polymers, 69, 382–390.

    Article  CAS  Google Scholar 

  17. 17.

    Millati, R., Edebo, L., & Taherzadeh, M. J. (2005). Enzyme and Microbial Technology, 36, 294–300.

    Article  CAS  Google Scholar 

  18. 18.

    Bartnicki-Garcia, S., & Nickerson, W. J. (1962). Biochimica et Biophysica Acta, 102–19.

  19. 19.

    Sparringa, R. A., & Owens, J. D. (1999). International journal of Food Microbiology, 47, 153–157.

    Article  CAS  Google Scholar 

Download references


The work was financed by the Industrial Biotechnology Group, Institute of Biotechnology and Bioengineering, Isfahan University of Technology.

Author information



Corresponding author

Correspondence to Akram Zamani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohammadi, M., Zamani, A. & Karimi, K. Effect of Phosphate on Glucosamine Production by Ethanolic Fungus Mucor indicus . Appl Biochem Biotechnol 171, 1465–1472 (2013). https://doi.org/10.1007/s12010-013-0440-7

Download citation


  • Mucor indicus
  • Glucosamine (GlcN)
  • Ethanol
  • Phosphorous concentration