Skip to main content
Log in

Enhanced Hydrolysis and Acidification of Waste Activated Sludge by Biosurfactant Rhamnolipid

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of biosurfactant rhamnolipid (RL) on hydrolysis and acidification of waste activated sludge (WAS) was investigated. The results indicated that RL could greatly reduce the surface tension of sludge, resulting in stimulating the hydrolysis rate of WAS and enhancing the production of short-chain fatty acids (SCFAs). With the increase of RL dosage from 0.2 to 0.5 g/g DS, the maximum soluble chemical oxygen demand (SCOD), protein and carbohydrate concentration increased correspondingly. After 6 h of hydrolysis, SCOD, protein and carbohydrate concentration increased from 371.9, 93.3 and 9.0 mg/l to 3,994.5, 800.0 and 401.4 mg/l at RL 0.3 g/g DS, respectively. Furthermore, the release of NH4 +-N, PO4 3−-P and the accumulation of SCFAs also improved in the presence of RL. The maximum SCFAs was 1,829.9 mg COD/l at RL 0.3 g/g DS, while it was only 377.7 mg COD/l for the blank test. The propionic acid and acetic acid were the mainly SCFAs produced, accounting for 50–60% of total SCFAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

RL:

Biosurfactant rhamnolipid

SCFAs:

Short-chain fatty acids

WAS:

Waste activated sludge

SCOD:

Soluble chemical oxygen demand

TCOD:

Total chemical oxygen demand

DS:

Dry sludge

VSS:

Volatile suspended solids

SDBS:

Sodium dodecylbenzene sulphonate

SDS:

Sodium dodecyl sulphate

EPS:

Extracellular polymeric substances

CMC:

Critical micelle concentration

ME:

Mixed enzyme

TSS:

Total suspended solids

References

  1. Appels, L., Baeyens, J., Degreve, J., & Dewil, R. (2008). Principles and potential of the anerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781.

    Google Scholar 

  2. Lemos, P. C., Serafim, L. S., & Reis, M. A. M. (2006). Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding. Journal of Biotechnology, 122, 226–238.

    Article  CAS  Google Scholar 

  3. Tong, J., & Chen, Y. G. (2009). Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment. Water Research, 43, 2969–2976.

    Article  CAS  Google Scholar 

  4. Eastman, J. A., & Ferguson, J. F. (1981). Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. Journal - Water Pollution Control Federation, 53, 352–366.

    CAS  Google Scholar 

  5. Czechowski, F., & Marcinkowski, K. (2006). Sewage sludge stabilisation with calcium hydroxide: effect on physicochemical properties and molecular composition. Water Research, 40, 1895–1905.

    Article  CAS  Google Scholar 

  6. Muller, J. A. (2001). Prospects and problems of sludge pre-treatment processes. Water Sci. Technology, 44, 121–128.

    CAS  Google Scholar 

  7. Yang, Q., Luo, K., Li, X. M., Wang, D. B., Zheng, W., Zeng, G. M., & Liu, J. J. (2010). Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresource Technology, 101, 2924–2930.

    Article  CAS  Google Scholar 

  8. Liwarska-Bizukojc, E., & Bizukojc, M. (2006). Effect of selected anionic surfactants on activated sludge flocs. Enzyme and Microbial Technology, 39, 660–668.

    Article  CAS  Google Scholar 

  9. Jiang, S., Chen, Y. G., & Zhou, Q. (2007). Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification. Chemical Engineering Journal, 132, 311–317.

    Article  CAS  Google Scholar 

  10. Wang, H. Y., Fan, B. Q., Li, C. H., & Liu, M. (2011). Effects of rhamnolipid on the cellulase and xylanase in hydrolysis of wheat straw. Bioresource Technology, 102, 6515–6521.

    Article  CAS  Google Scholar 

  11. Thangamani, S., & Shreve, G. S. (1994). Effect of anionic biosurfactant on hexadecane partitioning in multiphase systems. Environmental Science and Technology, 28, 1993–2000.

    Article  CAS  Google Scholar 

  12. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 53, 495–508.

    Article  CAS  Google Scholar 

  13. APHA, AWWA, WEF. (2005). Standard methods, 19th ed. Washington, DC, USA

  14. Herbert, D., Philipps, P. J., & Strange, R. E. (1971). Carbohydrate analysis. Methods in Enzymology, 5B, 265–277.

    Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  16. Luo, K., Yang, Q., Yu, J., Li, X. M., Yang, G. J., Xie, B. X., Yang, F., Zheng, W., & Zeng, G. M. (2011). Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresource Technology, 102, 7103–7110.

    Article  CAS  Google Scholar 

  17. Liu, H., & Fang, H. H. P. (2002). Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 95, 249–256.

    Article  CAS  Google Scholar 

  18. Vavilin, V. A., Rytov, S. V., & Lokshina, L. Y. (1996). A description of hydrolysis kinetics in anaerobic degradation of particulate organic matter. Bioresource Technology, 56, 229–237.

    Article  CAS  Google Scholar 

  19. Helle, S. S., Duff, S. J. B., & Cooper, D. G. (1993). Effect of surfactants on cellulose hydrolysis. Biotechnology and Bioengineering, 42, 611–617.

    Article  CAS  Google Scholar 

  20. Feitkenhauer, H., & Meyer, U. (2002). Anaerobic digestion of alcohol sulfate (anionic surfactant) rich wastewater-batch experiments: Part I. Influence of the surfactant concentration. Bioresour. Technol, 82, 115–121.

    Article  CAS  Google Scholar 

  21. Mayer, A. S., Zhong, L., & Pope, G. A. (1999). Measurement of mass-transfer rates for surfactant-enhanced solubilization of nonaqueous phase liquids. Environmental Science and Technology, 33, 2965–2972.

    Article  CAS  Google Scholar 

  22. Sotirova, A., Spasova, D., Vasileva-Tonkova, E., & Galabova, D. (2009). Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Microbiology Research, 164, 297–303.

    Article  CAS  Google Scholar 

  23. Ji, R., & Brune, A. (2005). Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biology & Biochemistry, 37, 1648–1655.

    Article  CAS  Google Scholar 

  24. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99, 4044–4064.

    Article  CAS  Google Scholar 

  25. Ji, Z. Y., Chen, G. L., & Chen, Y. G. (2010). Effects of waste activated sludge and surfactant addition on primary sludge hydrolysis and short-chain fatty acids accumulation. Bioresource Technology, 101, 3457–3462.

    Article  CAS  Google Scholar 

  26. Yu, H. Q., Zheng, X. J., Hu, Z. H., & Gu, G. W. (2003). High-rate anaerobic hydrolysis and acidogenesis of sewage sludge in a modified upflow reactor. Water Science and Technology, 48, 69–75.

    CAS  Google Scholar 

  27. Jiang, S., Chen, Y. G., Zhou, Q., & Gu, G. W. (2007). Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Water Research, 41, 3112–3120.

    Article  CAS  Google Scholar 

  28. Chen, Y. G., Jiang, S., Yuan, H. Y., Zhou, Q., & Gu, G. W. (2007). Hydrolysis and acidification of waste activated sludge at different pHs. Water Research, 41, 683–689.

    Article  CAS  Google Scholar 

  29. Kayhanian, M. (1994). Performance of a high-solids anaerobic digestion process under various ammonia concentrations. Journal of Chemical Technology and Biotechnology, 59, 349–352.

    Article  CAS  Google Scholar 

  30. Mclnerney, M. J., Struchtemeyer, C. G., Sieber, J., Mouttaki, H., Stams, A. J. M., Schink, B., Rohlin, L., & Gunsalus, R. P. (2008). Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Annual New York Academy of Sciences, 1125, 58–72.

    Google Scholar 

  31. Feng, L. Y., Chen, Y. G., & Zheng, X. (2009). Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Environmental Science and Technology, 43, 4373–4380.

    Article  CAS  Google Scholar 

  32. Suwannakham, S., & Yang, S. T. (2005). Enhanced propionic acid fermentation by Propionibacterium acidipropionici mutant obtained by adaptation in a fibrous-bed bioreactor. Biotechnology and Bioengineering, 91, 325–337.

    Article  CAS  Google Scholar 

  33. Luo, K., Yang, Q., Li, X. M., Chen, H. B., Liu, X., Yang, G. J., & Zeng, G. M. (2013). Novel insights into enzymatic-enhanced anaerobic digestion of waste activated sludge by three-dimensional excitation and emission matrix fluorescence spectroscopy. Chemosphere, 91, 579–585.

    Article  CAS  Google Scholar 

  34. Chen, Y. G., Randall, A. A., & McCue, T. (2004). The efficiency of enhanced biological phosphorus removal from real wastewater affected by different ratios of acetic to propionic acid. Water Research, 38, 27–36.

    Article  CAS  Google Scholar 

  35. Wang, Q., Kuninobu, M., Ogawa, H. I., & Kato, Y. (1999). Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass and Bioenergy, 16, 407–416.

    Article  CAS  Google Scholar 

  36. Sarney, D. B., & Vulfson, E. N. (1995). Application of enzymes to the synthesis of surfactants. Trends in Biotechnology, 13, 164–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the project of National Natural Science Foundation of China (No. 51078128), International Science and Technology Cooperation Program of China (No. 2011DFA90740), Planned Science and Technology Project of Hunan Province, China (No. 2011SK3215), and the Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (No. 2012KFJJ007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Yang or Xiao-Ming Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, X., Luo, K., Yang, Q. et al. Enhanced Hydrolysis and Acidification of Waste Activated Sludge by Biosurfactant Rhamnolipid. Appl Biochem Biotechnol 171, 1416–1428 (2013). https://doi.org/10.1007/s12010-013-0439-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0439-0

Keywords

Navigation