Applied Biochemistry and Biotechnology

, Volume 171, Issue 6, pp 1351–1361 | Cite as

Production of the Biopesticide Azadirachtin by Hairy Root Cultivation of Azadirachta indica in Liquid-Phase Bioreactors

  • Smita Srivastava
  • Ashok K. SrivastavaEmail author


Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l−1dry weight and azadirachtin yield of 3.2 mg g−1 leading to a volumetric productivity of azadirachtin as 1.14 mg l−1 day−1. The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).


Azadirachtin Hairy roots Azadirachta indica Bubble column reactor Polyurethane foam Antifeedant index 



The authors are thankful to Dr. Subramanyam, Principal Scientist, Division of Entomology, Indian Institute of Agricultural Research, Delhi, for his assistance in the antifeedant assay. The financial support by the Department of Biotechnology, Ministry of Science and Technology, New Delhi (India) for the execution of the above research is gratefully acknowledged.


  1. 1.
    Srivastava, S., & Srivastava, A. K. (2008). Recent advances of in vitro azadirachtin production. In K. G. Ramawat & K. M. Merillon (Eds.), Biotechnology: bioactive molecules and medicinal plants (pp. 234–250). Germany: Springer.Google Scholar
  2. 2.
    Prakash, G., & Srivastava, A. K. (2006). Biochemical Engineering Journal, 29, 62–68.CrossRefGoogle Scholar
  3. 3.
    Prakash, G., & Srivastava, A. K. (2007). Process Biochemistry, 42, 93–97.CrossRefGoogle Scholar
  4. 4.
    Prakash, G., & Srivastava, A. K. (2008). Biochemical Engineering Journal, 40, 218–226.CrossRefGoogle Scholar
  5. 5.
    Srivastava, S., Harsh, S., & Srivastava, A. K. (2008). Process Biochemistry, 43, 1121–1123.CrossRefGoogle Scholar
  6. 6.
    Sujanya, S., Devi, B. P., & Sai, I. (2008). Journal of Biosciences, 33, 113–120.CrossRefGoogle Scholar
  7. 7.
    Srivastava, P., & Chaturvedi, R. (2011). Plant Signaling & Behavior, 6, 974–981.CrossRefGoogle Scholar
  8. 8.
    Prakash, G., & Srivastava, A. K. (2011). Asia-Pacific Journal of Chemical Engineering, 6, 129–137.CrossRefGoogle Scholar
  9. 9.
    Giri, A., & Narasu, M. L. (2000). Biotechnology Advances, 18, 1–22.CrossRefGoogle Scholar
  10. 10.
    Carvalho, E. B., Holihan, S., Pearsall, B., & Curtis, W. R. (1997). Effect of root morphology on reactor design and operation for production of chemicals. In P. Doran (Ed.), Hairy Roots (pp. 151–167). UK: Gordon and Breach Reading.Google Scholar
  11. 11.
    Kim, Y. J., Weathers, P. J., & Wyslouzil, B. E. (2002). Biotechnology and Bioengineering, 80, 454–464.CrossRefGoogle Scholar
  12. 12.
    Srivastava, S., & Srivastava, A. K. (2007). Critical Reviews in Biotechnology, 27, 29–43.CrossRefGoogle Scholar
  13. 13.
    Srivastava, S., & Srivastava, A. K. (2012). In Vitro Cellular and Developmental Biology - Plant, 48, 73–84.CrossRefGoogle Scholar
  14. 14.
    Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  15. 15.
    Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.CrossRefGoogle Scholar
  16. 16.
    Srivastava, S., Srivastava, A.K. (2006) Enhanced azadirachtin production in low shear bioreactor(s). Proceedings of a national conference CHEMCON-06, Ankaleshwar, India, December 27–30.Google Scholar
  17. 17.
    Yan, O., Hu, Z., Tan, R. X., & Wu, J. (2005). Journal of Biotechnology, 119, 416–424.CrossRefGoogle Scholar
  18. 18.
    Mordue(Luntz), A. J., Simmonds, M. S. J., Ley, S. V., Blaney, W. M., Mordue, W., Nasiruddin, M., & Nisbet, A. J. (1998). Pesticide Science, 54, 277–284.CrossRefGoogle Scholar
  19. 19.
    Blaney, W. M., Simmonds, M. S. J., Ley, S. V., Anderson, J. C., & Toogood, P. L. (1990). Entomologia Experimentais et Applicata, 55, 149–160.CrossRefGoogle Scholar
  20. 20.
    Simmonds, M. S. J., Blaney, W. M., Ley, S. V., Anderson, J. C., & Toogood, P. L. (1990). Entomologia Experimentalis et Applicata, 55, 169–181.CrossRefGoogle Scholar
  21. 21.
    Mordue(Luntz), A. J., Nisbet, A. J., Jennens, L., Ley, S. V., & Mordue, W. (1999). Tritiated dihydroazadirachtin binding to Schistocerca gregaria testes and Spodoptera Sf9 cells suggests a similar cellular mechanism of action for azadirachtin in Azadirachta indica A. Juss. In R. P. Singh and R. C. Saxena (Eds.), International Neem Conference (pp. 247–258). Oxford and IBH Publishing Co. Pvt. Ltd., Australia.Google Scholar
  22. 22.
    Mordue(Luntz), A. J., & Nisbet, A. J. (2000). Anais da Sociedade Entomologica do Brasil, 29, 615–632.CrossRefGoogle Scholar
  23. 23.
    Mordue(Luntz), A. J., Nisbet, A. J., Nasiruddin, M., & Walker, E. (1996). Entomologia Experimentalis et Applicata, 80, 69–72.CrossRefGoogle Scholar
  24. 24.
    Prakash, G., Emmannuel, C. J. S. K., & Srivastava, A. K. (2005). Biotechnology and Bioprocess Engineering, 10, 198–204.CrossRefGoogle Scholar
  25. 25.
    Dubois, M., Gilf, K. A., Hamilton, J. K., Roberts, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  26. 26.
    Yuan, Y. J., Li, C., Hu, Z. D., & Wu, J. C. (2002). Enzyme and Microbial Technology, 30, 774–778.CrossRefGoogle Scholar
  27. 27.
    Ünyayar, S., & Ünyayar, A. (2000). Turkish Journal of Biology, 24, 769–774.Google Scholar
  28. 28.
    Choi, Y. E., Kim, Y. S., & Paek, K. Y. (2006). Types and design of bioreactors for hairy root culture. In S. Dutta Gupta & Y. Ibaraki (Eds.), Plant tissue culture engineering series: focus on biotechnology (pp. 161–171). Dordrecht: Springer.CrossRefGoogle Scholar
  29. 29.
    Taya, M., Yoyama, A., Kondo, O., Kobayashi, T., & Matsui, C. (1989). Journal of Chemical Engineering of Japan, 22, 89–94.CrossRefGoogle Scholar
  30. 30.
    Muranaka, T., Ohkawa, H., & Yamada, Y. (1993). Applied Microbiology and Biotechnology, 40, 219–223.CrossRefGoogle Scholar
  31. 31.
    Kondo, O., Honda, H., Taya, M., & Kobayashi, T. (1989). Applied Microbiology and Biotechnology, 32, 291–294.CrossRefGoogle Scholar
  32. 32.
    Srivastava, S., & Srivastava, A. K. (2012). Applied Biochemistry and Biotechnology, 166, 365–378.CrossRefGoogle Scholar
  33. 33.
    Allan, E., Eeswara, J., Jarvis, A., Mordue(Luntz), A., Morgan, E., & Stuchbury, T. (2002). Plant Cell Reports, 21, 374–379.CrossRefGoogle Scholar
  34. 34.
    Satdive, R. K., Fulzele, D. P., & Eapen, S. (2007). Journal of Biotechnology, 128, 281–289.CrossRefGoogle Scholar
  35. 35.
    Srivastava, S., & Srivastava, A. K. (2012). Applied Biochemistry and Biotechnology, 167, 1818–1830.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations