Skip to main content
Log in

Remarkable Improvement of Methylglyoxal Synthase Thermostability by His–His Interaction

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lately it has been proposed that interaction between two positively charged side chains can stabilize the folded state of proteins. To further explore this point, we studied the effect of histidine–histidine interactions on thermostability of methylglyoxal synthase from Thermus sp. GH5 (TMGS). The crystal structure of TMGS revealed that His23, Arg22, and Phe19 are in close distance and form a surface loop. Here, two modified enzymes were produced by site-directed mutagenesis (SDM); one of them, one histidine (TMGS-HHO), and another two histidines (TMGS-HHHO) were inserted between Arg22 and His23 (HO). In comparison with the wild type, TMGS-HHO thermostability increased remarkably, whereas TMGS-HHHO was very unstable. To explore the role of His23 in the observed phenomenon, the original His23 in TMGS-HHHO was replaced with Ala (TMGS-HHA). Our data showed that the half-life of TMGS-HHA decreased in relation to the wild type. However, its half-life increased in comparison with TMGS-HHHO. These results demonstrated that histidine–histidine interactions at position 23 in TMGS-HHO probably have the main role in TMGS thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TMGS:

Thermus sp. GH5 methylglyoxal synthase

HO :

TMGS original histidine

TMGS-HHO and TMGS-HHHO :

Mutant TMGS

DHAP:

Dihydroxyacetone phosphate

SDM:

Site-directed mutagenesis

References

  1. Heyda, J., Mason, P. E., & Jungwirth, P. (2010). The Journal of Physical Chemistry. B, 114, 8744–8749.

    Article  CAS  Google Scholar 

  2. Villarreal, M., & Montich, G. (2002). Protein Science, 11, 2001–2009.

    Article  CAS  Google Scholar 

  3. Magalhaes, A., Maigret, B., Hoflack, J., Gomes, J. N., & Scherage, H. A. (1994). Journal of Protein Chemistry, 13, 195–215.

    Article  CAS  Google Scholar 

  4. Vondrasek, J., Mason, P. E., Heyda, J., Collins, K. D., & Jungwirth, P. (2009). The Journal of Physical Chemistry. B, 113, 9041–9045.

    Article  CAS  Google Scholar 

  5. Kubickova, A., Krizek, T., Coufal, P., Wernersson, E., Heyda, J., & Jungwirth, P. (2011). Journal of Physical Chemistry Letters, 2, 1387–1389.

    Article  CAS  Google Scholar 

  6. Haghani, K., Khajeh, K., Naderi-Manesh, H., & Ranjbar, B. (2011). Journal of Microbiology and Biotechnology, 22, 592–599.

    Article  Google Scholar 

  7. Haghani, K., Khajeh, K., Naderi-Manesh, H., & Ranjbar, B. (2012). International Journal of Biological Macromolecules, 50, 1040–1047.

    Article  CAS  Google Scholar 

  8. Saadat, D., & Harrison, D. H. (1999). Structure, 7, 309–317.

    Article  CAS  Google Scholar 

  9. Altaras, N. E., & Cameron, D. C. (1999). Applied and Environmental Microbiology, 65, 1180–1185.

    CAS  Google Scholar 

  10. Huang, K. E. X., Rudolph, F. B., & Bennett, G. N. (1999). Appl. Environmental Microbiology, 65, 3244–3247.

    CAS  Google Scholar 

  11. Ferguson, G. P. (1999). Trends in Microbiology, 7, 242–247.

    Article  CAS  Google Scholar 

  12. Totemeyer, S., Booth, N. A., Nichols, W. W., Dunbar, B., & Booth, I. R. (1998). Molecular Microbiology, 27, 553–562.

    Article  CAS  Google Scholar 

  13. Ferguson, G. P., Totemeyer, S., MacLean, M. J., & Booth, I. R. (1998). Archives of Microbiology, 170, 209–218.

    Article  CAS  Google Scholar 

  14. Hopper, D. J., & Cooper, R. A. (1972). The Biochemical Journal, 128, 321–329.

    CAS  Google Scholar 

  15. Marks, G. T., Harris, T. K., Massiah, M. A., Mildvan, A. S., & Harrison, D. H. (2001). Biochemistry, 40, 6805–6818.

    Article  CAS  Google Scholar 

  16. Saadat, D., & Harrison, D. H. (1998). Biochemistry, 37, 10074–10086.

    Article  CAS  Google Scholar 

  17. Pazhang, M., Khajeh, K., Asghari, S. M., Falahati, H., & Naderi-Manesh, H. (2010). Applied Biochemistry and Biotechnology, 162, 1519–1528.

    Article  CAS  Google Scholar 

  18. Fisher, C. L., & Pei, G. K. (1997). BioTechniques, 23, 570–574.

    CAS  Google Scholar 

  19. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  20. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  21. Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  22. Hopper, D. J., & Cooper, R. A. (1971). FEBS Letters, 13, 213–216.

    Article  CAS  Google Scholar 

  23. Cooper, R. A. (1975). Methods in Enzymology, 41, 502–508.

    Article  CAS  Google Scholar 

  24. Tomazic, S. J., & Klibanov, A. M. (1988). The Journal of Biological Chemistry, 263, 3086–3091.

    CAS  Google Scholar 

  25. Mozhaev, V. V. (1993). Trends in Biotechnology, 11, 88–95.

    Article  CAS  Google Scholar 

  26. Nagi, A. D., & Regan, L. (1996). Folding and Design, 2, 67–75.

    Article  Google Scholar 

  27. Zhou, H. X. (2001). The Journal of Physical Chemistry. B, 105, 6763–6766.

    Article  CAS  Google Scholar 

  28. Imoto, T., Ueda, T., Tamura, T., Isakari, Y., Abe, Y., Inoue, M., Miki, T., Kawano, K., & Yamada, H. (1994). Protein Engineering, 7, 743–748.

    Article  CAS  Google Scholar 

  29. Danson, M. J., Hough, D. W., Russell, R. J., Taylor, G. L., & Pearl, L. (1996). Protein Engineering, 9, 629–630.

    Article  CAS  Google Scholar 

  30. Scrutton, N. S., Deonarain, M. P., Berry, A., & Perham, R. N. (1992). Science, 258, 1140–1143.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors express their gratitude to the research council of Tarbiat Modares University for the financial support during the course of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Khajeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, M., Kashi, M.A., Zareian, S. et al. Remarkable Improvement of Methylglyoxal Synthase Thermostability by His–His Interaction. Appl Biochem Biotechnol 172, 157–167 (2014). https://doi.org/10.1007/s12010-013-0404-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0404-y

Keywords

Navigation