Skip to main content
Log in

Biochemical Characterization and Antitumor Study of l-Glutaminase from Bacillus cereus MTCC 1305

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

l-Glutaminase (E.C.3.5.2.1) extracellularly produced by Bacillus cereus MTCC 1305 was purified to apparent homogeneity with a fine band. The molecular weight of native enzyme and its subunit were found to be approximately 140 and 35 kDa, respectively, which indicates its homotetrameric nature. The substrate specificity test of this enzyme showed its specificity for l-glutamine. The purified enzyme showed maximum activity at optimum pH 7.5 and temperature 35 °C. The enzyme retained stability up to 50 and 20 % even after treatment at 50 and 55 °C, respectively, for 30 min. Monovalent cations (Na+, K+) and phosphate ion activated the enzyme activity, while divalent cations (Mg2+, Mn2+, Zn2+, Pb2+, Ca2+, Co2+, Hg2+, Cd2+, Cu2+) inhibited its activity. Reducing agents (cysteine, glutathione, dithiothreitol, l-ascorbic acid, and β-mercaptoethanol) stimulated its activity, whereas thiol-binding agents (iodoacetamide, p-chloromercuribenzoic acid) resulted in the inhibition of this enzyme. Kinetic parameters, K m, V max, K cat, of purified enzyme were found to be 6.25 mM, 100 μmol/min/mg protein and 2.22 × 102 M−1s−1, respectively. The gradual inhibition in growth of hepatocellular carcinoma (Hep-G2) cell lines was found with IC50 value of 82.27 μg/ml in the presence of different doses of l-glutaminase (10–100 μg/ml).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Sabu, A., Nampoothiri, K. M., & Pandey, A. (2005). Methods in Biotechnology, 17, 75–90.

    CAS  Google Scholar 

  2. Kroemer, G., & Pouyssegur, J. (2008). Cancer Cell, 13, 472–482.

    Article  CAS  Google Scholar 

  3. Roberts, J., Holcenberg, J. S., & Dolowy, W. C. (1970). Nature, London, 227, 1136–1137.

    Article  CAS  Google Scholar 

  4. David, R. W., & Craig, B. T. (2010). Trends in Biochemical Sciences, 35(8), 427–433.

    Article  Google Scholar 

  5. Berardinis, D. R. J., & Cheng, T. (2009). Oncogene, 29, 313–324.

    Article  Google Scholar 

  6. Marcus, K., Heinrich, K., & Thomas, J. (2002). FEMS Microbiology Letters, 206, 63–67.

    Article  Google Scholar 

  7. Davidson, L., Brear, D. R., Wingard, P., Hawkins, J., & Kitto, G. B. (1977). Journal of Bacteriology, 129, 1379–1386.

    CAS  Google Scholar 

  8. Mannan, S., Sinha, A., Sadhukhan, R., & Chakrabarty, S. L. (1995). Current Microbiology, 30, 291–298.

    Article  Google Scholar 

  9. Soda, K., Ohshima, M., & Yamamoto, T. (1972). Biochemical and Biophysical Research Communication, 46, 1278–1284.

    Article  CAS  Google Scholar 

  10. Shimizu, Y., Ueyama, A., & Goto, K. (1991). Journal of Brewing Society of Japan, 86, 441–446.

    CAS  Google Scholar 

  11. Mashburn, L. T., & Wriston, J. C., Jr. (1964). Archives of Biochemistry and Biophysics, 105, 450–52.

    Article  CAS  Google Scholar 

  12. Roberts, J., Holcenberg, J. S., & Dolowy, W. C. (1972). Journal of Biological Chemistry, 247, 84–90.

    CAS  Google Scholar 

  13. Wade, H. E., Robinson, H. K., & Philips, B. W. (1971). Journal of General Microbiology, 69, 299–312.

    Article  CAS  Google Scholar 

  14. Imada, A., Igarasi, S., Nakahama, K., & Isono, M. (1973). Journal of General Microbiology, 76, 85–99.

    Article  CAS  Google Scholar 

  15. Curthoys, N. P., & Weiss, R. F. (1974). Journal of Biological Chemistry, 249, 3261–3266.

    CAS  Google Scholar 

  16. Gallagher, S. (1995). In: Current protocols in protein science. J. E. Coligan (ed.), pp. 10.3.4. New York: Wiley.

  17. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  18. Mosmann, T. (1983). Journal of Immunological Methods, 65, 55–63.

    Article  CAS  Google Scholar 

  19. Brown, G., Singer, A., Dementieva, I., Proudfoot, M., Kuznetsova, E., Skarina, T., et al. (2008). Biochemistry, 47, 5724–5735.

    Article  CAS  Google Scholar 

  20. Sinsuwan, S., Yongsawatdigul, J., Chumseng, S., & Yamabhai, M. (2012). Protein Expression and Purification, 83, 52–58.

    Article  CAS  Google Scholar 

  21. Tachiki, T., Yamada, T., Ueda, M., Naemura, Y., Imamura, N., Hamada, Y., et al. (1996). Bioscience, Biotechnology, and Biochemistry, 60, 1160–1164.

    Article  CAS  Google Scholar 

  22. Wakayama, M., Yamagata, T., Kamemura, A., Bootim, N., Yano, S., Tachiki, T., et al. (2005). Journal of Industrial Microbiology and Biotechnology, 32, 383–390.

    Article  CAS  Google Scholar 

  23. Iwasa, T., Fujii, M., & Yokotsuka, T. (1987). Shoyu Kenkyushi, 13, 205–210.

    CAS  Google Scholar 

  24. Moriguchi, M., Sakai, K., Tateyama, R., Furuta, Y., & Wakayama, M. (1994). Journal of Fermentation and Bioengineering, 77, 621–625.

    Article  CAS  Google Scholar 

  25. Klein, M., Kaltwasser, H., & Jahns, T. (2002). FEMS Microbiology Letters, 206, 63–67.

    Article  CAS  Google Scholar 

  26. Jeon, J. M., Lee, H. I., Han, S. H., Chang, C. S., & So, J. S. (2010). Applied Biochemistry and Biotechnology, 162, 146–154.

    Article  CAS  Google Scholar 

  27. Yano, T., Ito, M., Tomita, K., Kumagai, H., & Tochikura, T. (1988). Journal of Fermentation Technology, 66, 137–143.

    Article  CAS  Google Scholar 

  28. Dura, M. A., Flores, M., & Toldra, F. (2002). International Journal of Food Microbiology, 76, 117–126.

    Article  CAS  Google Scholar 

  29. Soberon, M., & Gonzalez, A. (1987). Journal of General Microbiology, 133, 1–8.

    CAS  Google Scholar 

  30. Broome, J. D. (1961). Nature London, 191, 1114–1115.

    Article  CAS  Google Scholar 

  31. Abe, T., Takenaka, O., & Inada, Y. (1974). Biochimica et Biophysica Acta, 358, 11 3–116.

    Article  CAS  Google Scholar 

  32. Hartman, S. (1970). Methods in Enzymology, 134, 941–945.

    Article  Google Scholar 

  33. Holcenberg, J. S. (1985). Methods in Enzymology, 112, 257–263.

    Article  Google Scholar 

  34. Kvamme, E., Torgner, I. A., & Roberg, B. (2001). Journal of Neuroscience Research, 66, 951–958.

    Article  CAS  Google Scholar 

  35. Penninckx, M. J., & Jaspers, C. J. (1985). Biochimie, 67, 999–1006.

    Article  CAS  Google Scholar 

  36. Cappelletti, D., Chiarelli, L. R., Pasquetto, M. V., Stivala, C. V., & Scotti, C. (2008). Biochemical and Biophysical Research Communications, 377, 1222–1226.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. N. Bawa (NBE Institute, Delhi, India, and Dr. M. V. Jagannadham (Molecular Biology Unit, IMS, BHU, Varanasi) for providing laboratory facilities for this research work. The author Mrs. Priyanka Singh is also thankful to INSPIRE-DST, Government of India, for financial support, and the School of Biochemical Engineering, Institute of Technology, BHU, Varanasi, India, for providing laboratory and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Banik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Banik, R.M. Biochemical Characterization and Antitumor Study of l-Glutaminase from Bacillus cereus MTCC 1305. Appl Biochem Biotechnol 171, 522–531 (2013). https://doi.org/10.1007/s12010-013-0371-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0371-3

Keywords