Skip to main content
Log in

Atmospheric Pressure Plasma Pretreatment of Sugarcane Bagasse: The Influence of Moisture in the Ozonation Process

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Sugarcane bagasse samples were pretreated with ozone via atmospheric O2 pressure plasma. A delignification efficiency of approximately 80 % was observed within 6 h of treatment. Some hemicelluloses were removed, and the cellulose was not affected by ozonolysis. The quantity of moisture in the bagasse had a large influence on delignification and saccharification after ozonation pretreatment of the bagasse, where 50 % moisture content was found to be best for delignification (65 % of the cellulose was converted into glucose). Optical absorption spectroscopy was applied to determine ozone concentrations in real time. The ozone consumption as a function of the delignification process revealed two main reaction phases, as the ozone molecules cleave the strong carbon–carbon bonds of aromatic rings more slowly than the weak carbon–carbon bonds of aliphatic chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Impurity composition—H2O < 200.0 ppm; CO < 10.0 ppm; NH3 < 25.0 ppm; SO2 < 5.0 ppm; NOx < 2.5 ppm; H2S < 1.0 ppm. The amounts of impurity are despicable. No hydrocarbon compounds were present in our feed gas.

References

  1. Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2009). Biomass Chemical Engineering and Technology, 32, 517–526.

    Article  CAS  Google Scholar 

  2. Galbe, M., & Zacchi, G. (2002). Applied Microbiology and Biotechnology, 59, 618–628.

    Article  CAS  Google Scholar 

  3. Claassen, P. A. M., van Lier, J. B., Lopez Contreras, A. M., van Niel, E. W. J., Sijtsma, L., Stams, A. J. M., et al. (1999). Applied Microbiology and Biotechnology, 52, 741–755.

    Article  CAS  Google Scholar 

  4. Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.

    Article  CAS  Google Scholar 

  5. Saha, B. C. (2003). Journal of Industrial Microbiology and Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  6. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., et al. (2005). Bioresource Technology, 96, 673–686.

    Article  CAS  Google Scholar 

  7. Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.

    Article  CAS  Google Scholar 

  8. Rocha, G. J. M., Gonçalves, A. R., Oliveira, B. R., Olivares, E. G., & Rossell, C. E. V. (2012). Industrial Crops and Products, 35, 274–279.

    Article  CAS  Google Scholar 

  9. Song, C.-L., Zhang, Z.-T., Chen, W.-Y., & Liu, C. (2009). IEEE Transactions on Plasma Science, 37, 1817–1824.

    Article  CAS  Google Scholar 

  10. Oldham, C.J. (2009). Ph.D. thesis, North Carolina State University, Raleigh, USA.

  11. Schultz-Jensen, N., Leipold, F., Bindslev, H., & Thomsen, A. B. (2011). Applied Biochemistry and Biotechnology, 163, 558–572.

    Article  CAS  Google Scholar 

  12. Schultz-Jensen, N., Kádár, Z., Thomsen, A. B., Bindslev, H., & Leipold, F. (2011). Applied Biochemistry and Biotechnology, 165, 1010–1023.

    Article  CAS  Google Scholar 

  13. Miura, T., Lee, S.-H., Inoue, S., & Endo, T. (2012). Bioresource Technology, 126, 182–186.

    Article  CAS  Google Scholar 

  14. Karanassios, V. (2004). Spectrochimica Acta B, 59, 909–928.

    Article  Google Scholar 

  15. Crestini, C., & D'Auria, M. (1996). Journal of Photochemistry and Photobiology A, 101, 69–73.

    Article  CAS  Google Scholar 

  16. Crestini, C., & D'Auria, M. (1997). Tetrahedron, 53, 7877–7888.

    Article  CAS  Google Scholar 

  17. Bonini, C., D’ Auria, M., D’ Alessio, L., Mauriello, G., Tofani, D., Viggiana, D., et al. (1998). Journal of Photochemistry and Photobiology A, 113, 119–124.

    Article  CAS  Google Scholar 

  18. Criegee, R. (1975). Angewandte Chemie International Edition, 14, 745–751.

    Article  Google Scholar 

  19. Bailey, P. S. (1978). Ozonation in Organic Chemistry Vol. 1 Olefinic Compounds. New York: Academic Press.

    Google Scholar 

  20. Sarkanen, K. V., Islam, A., & Anderson, C. D. (1992). In S. Y. Lin & C. W. Dence (Eds.), Methods in Lignin Chemistry (pp. 387–406). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  21. Binder, A., Pelloni, L., & Fiechter, A. (1980). European Journal of Applied Microbiology and Biotechnology, 11, 1–5.

    Article  CAS  Google Scholar 

  22. Mbachu, R. A. D., & Manley, R. S. J. (1981). Journal of Polymer Science Part A: Polymer Chemistry, 19, 2053–2063.

    Article  CAS  Google Scholar 

  23. Orphal, J. (2003). Journal of Photochemistry and Photobiology A, 157, 185–209.

    Article  CAS  Google Scholar 

  24. Rocha, G. J. M., Silva, F. T., Araújo, G. T. & Curvelo, A. A. S. (1997). Proceedings, in Fifth Brazilian Symposium on the Chemistry of Lignin and Other Wood Components (Ramos, L. P., ed.), Sépia Editora e Gráfica, Curitiba, BR, pp. 113–115.

  25. Gouveia, E. R., Nascimento, R. T., Souto-Maior, A. M., & Rocha, G. J. M. (2009). Química Nova, 32, 1500–1503.

    Article  CAS  Google Scholar 

  26. Mandels, M., Andreotti, R., & Roche, C. (1976). Biotechnology and Bioengineering Symposium, 6, 21–33.

    CAS  Google Scholar 

  27. Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  28. Souza-Corrêa, J. A., Ridenti, M. A., Oliveira, C., Araújo, S. R., & Amorim, J. (2013). The Journal of Physical Chemistry. B, 117, 3110–3119.

    Article  Google Scholar 

  29. Vroom, K. E. (1957). Pulp & Paper-Canada, 58, 228–231.

    Google Scholar 

  30. Fengel, D., & Wegener, G. (1989). Wood: Chemistry—Ultrastructure—Reactions. Berlin: Walter de Gruyter.

    Google Scholar 

  31. Bentley, K. W. (1963). In A. Weissberger (Ed.), Techniques of Organic Chemistry Part 2-vol. 11 (pp. 875–906). New York: Wiley-Interscience.

    Google Scholar 

  32. Bailey, P. (1975). In J. S. Murphy & J. R. Orr (Eds.), Ozone Chemistry and Technology (pp. 77–83). Philadelphia: The Franklin Institute Press.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank FAPESP (2008/58034-0) for partial financial support. We appreciate the assistance given by Livia P. Vasconcellos and Tatiane T. Pereira during the chemical analyses procedures. Finally, the authors are grateful for the bagasse material supplied by Dr. Edgardo O. Gómez and gratefully acknowledge the technical support provided by Renan Henrique S. Fernandes and Anderson R. Pasqual at the milling stage of the bagasse samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Amorim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souza-Corrêa, J.A., Oliveira, C., Wolf, L.D. et al. Atmospheric Pressure Plasma Pretreatment of Sugarcane Bagasse: The Influence of Moisture in the Ozonation Process. Appl Biochem Biotechnol 171, 104–116 (2013). https://doi.org/10.1007/s12010-013-0362-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0362-4

Keywords

Navigation