Skip to main content
Log in

Yeasts and Lactic Acid Bacteria Mixed-Specie Biofilm Formation is a Promising Cell Immobilization Technology for Ethanol Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We previously found that some Saccharomyces cerevisiae and Lactobacillus plantarum remarkably formed mixed-specie biofilm in a static co-culture and deduced that this biofilm had potential as immobilized cells. We investigated the application of mixed-specie biofilm formed by S. cerevisiae BY4741 and L. plantarum HM23 for ethanol fermentation in repeated batch cultures. This mixed-specie biofilm was far abundantly formed and far resistant to washing compared with S. cerevisiae single biofilm. Adopting mixed-specie biofilm formed on cellulose beads as immobilized cells, we could produce enough ethanol from 10 or 20 % glucose during ten times repeated batch cultures for a duration of 10 days. Cell numbers of S. cerevisiae and L. plantarum during this period were stable. In mixed-specie biofilm system, though ethanol production was slightly lower compared to S. cerevisiae single-culture system due to by-production of lactate, pH was stably maintained under pH 4 without artificial control suggesting high resistance to contamination. Inoculated model contaminants, Escherichia coli and Bacillus subtilis, were excluded from the system in a short time. From the above results, it was indicated that the mixed-specie biofilm of S. cerevisiae and L. plantarum was a promising immobilized cell for ethanol fermentation for its ethanol productivity and robustness due to high resistance to contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aoi, Y. (2002). Journal of Bioscience and Bioengineering, 94, 552–556.

    CAS  Google Scholar 

  2. Cao, N., Du, J., Chen, C., Gong, C. G., & Tsao, G. T. (1997). Applied Biochemistry and Biotechnology, 63–65, 387–394.

    Article  Google Scholar 

  3. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Annual Review of Microbiology, 49, 711–745.

    Article  CAS  Google Scholar 

  4. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Science, 284, 1319–1322.

    Article  Google Scholar 

  5. Davey, M. E., & O’Toole, G. A. (2000). Microbiology and Molecular Biology Reviews, 64, 847–867.

    Article  CAS  Google Scholar 

  6. Demirci, A., Pometto, A. L., & Ho, K. L. (1997). Journal of Industrial Microbiology and Biotechnology, 19, 299–304.

    Article  CAS  Google Scholar 

  7. Furukawa, S., Kuchma, S. L., & O’Toole, G. A. (2006). Journal of Bacteriology, 188, 1211–1217.

    Article  CAS  Google Scholar 

  8. Furukawa, S., Nojima, N., Yoshida, K., Ogihara, H., & Morinaga, Y. (2011). Bioscience Biotechnology and Biochemistry, 75, 1430–1434.

    Article  CAS  Google Scholar 

  9. Furukawa, S., Yoshida, K., Ogihara, H., Yamasaki, M., & Morinaga, Y. (2010). Bioscience Biotechnology and Biochemistry, 74, 2136–2139.

    Article  Google Scholar 

  10. Gomez, M. A., Galvez, J. M., Hontoria, E., & Gonzalez-Lopez, J. (2003). Journal of Bioscience and Bioengineering, 95, 245–251.

    CAS  Google Scholar 

  11. Kolter, R., & Greenberg, E. P. (2006). Nature, 441, 300–302.

    Article  CAS  Google Scholar 

  12. Kumar, C. G., & Anand, S. K. (1998). International Journal of Food Microbiology, 42, 9–27.

    Article  CAS  Google Scholar 

  13. Martin, K. J., & Nerenberg, R. (2012). Bioresource Technology, 122, 83–94.

    Article  CAS  Google Scholar 

  14. Monds, R. D., & O’Toole, G. A. (2009). Trends in Microbiology, 17, 73–87.

    Article  CAS  Google Scholar 

  15. Okazaki, S., Furukawa, S., Ogihara, H., Kawarai, T., Matsuo, H., Kitada, C., et al. (2010). Journal of General and Applied Microbiology, 56, 205–211.

    Article  CAS  Google Scholar 

  16. Pongtharanqkul, T., & Demirci, A. (2006). Biotechnology Progress, 22, 217–224.

    Article  Google Scholar 

  17. Rangaswamy, V., & Ramakrishna, S. V. (2008). Letters in Applied Microbiology, 46, 661–666.

    Article  CAS  Google Scholar 

  18. Romano, J. D., & Kolter, R. (2005). Journal of Bacteriology, 187, 940–948.

    Article  CAS  Google Scholar 

  19. Shore, J. L., M’Coy, W. S., Gunsch, C. K., & Deshusses, M. A. (2012). Bioresource Technology, 112, 51–60.

    Article  CAS  Google Scholar 

  20. Terada, A., Hibiya, K., Nagai, J., Tsuneda, S., & Hirata, A. (2003). Journal of Bioscience and Bioengineering, 95, 170–178.

    CAS  Google Scholar 

  21. Urbance, S. E., Pometto, A. L., 3rd, Dispirito, A. A., & Denli, Y. (2004). Applied Microbiology and Biotechnology, 65, 664–670.

    Article  CAS  Google Scholar 

  22. Wood, B. J. B. (1998). Microbiology of Fermented Foods. London: Blackie Academic and Professional.

    Google Scholar 

  23. Wood, B. J. B. (1981). In M. E. Bushell & J. H. Slater (Eds.), Mixed Culture Fermentations (pp. 137–150). London: Academic.

    Google Scholar 

  24. Zottola, E. A., & Sasahara, K. C. (1994). International Journal of Food Microbiology, 23, 125–148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (Wakate B & Kiban C) to SF from MEXT; the Ministry of Education, Culture, Sports, Science and Technology of Japan; High-Tech Research Center Project for Private Universities; Matching Fund Subsidy to SF; and MEXT and Adaptable and Seamless Technology Transfer Program through target drive R&D to YM from Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soichi Furukawa or Yasushi Morinaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, A., Furukawa, S., Watanabe, S. et al. Yeasts and Lactic Acid Bacteria Mixed-Specie Biofilm Formation is a Promising Cell Immobilization Technology for Ethanol Fermentation. Appl Biochem Biotechnol 171, 72–79 (2013). https://doi.org/10.1007/s12010-013-0360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0360-6

Keywords

Navigation