Skip to main content
Log in

Natural Attenuation and Biosurfactant-Stimulated Bioremediation of Estuarine Sediments Contaminated with Diesel Oil

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We evaluated the bioremediation, by natural attenuation (NA) and by natural attenuation stimulated (SNA) using a rhamnolipid biosurfactant, of estuarine sediments contaminated with diesel oil. Sediment samples (30 cm) were put into 35 cm glass columns, and the concentrations of the 16 polycyclic aromatic hydrocarbons (PAHs) prioritized by the US Environmental Protection Agency were monitored for 111 days. Naphthalene percolated through the columns more than the other PAHs, and, in general, the concentrations of the lower molecular weight PAHs, consisting of two and three aromatic rings, changed during the first 45 days of treatment, whereas the concentrations of the higher molecular weight PAHs, consisting of four, five, and six rings, were more stable. The higher molecular weight PAHs became more available after 45 days, in the deeper parts of the columns (20–30 cm). Evidence of degradation was observed only for some compounds, such as pyrene, with a total removal efficiency of 82 and 78 % in the NA and SNA treatments, respectively, but without significant difference. In the case of total PAH removal, the efficiencies were significantly different of 82 and 67 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ITOPF-The International Tanker Owners Pollution Federation Limited. (2009). Statistics. Available from www.itopf.com. Accessed 27 August 2009.

  2. USEPA – The US Environmental Protection Agency. (2009). Priority Pollutants. Available from www.epa.gov. Accessed 6 January 2010.

  3. Balba, M. T., Al-Awadhi, N., & Al-Daher, R. (1998). Journal of Microbiological Methods, 32, 155–164.

    Article  CAS  Google Scholar 

  4. Bento, F. M., Camargo, F. A. O., Okeke, B. C., & Frankenberger, W. T. (2005). Bioresource Technology, 96, 1049–1055.

    Article  CAS  Google Scholar 

  5. Rosa, A., & Triguis, J. A. (2007). Environmental Science and Pollution Research International, 14, 470–476.

    Article  CAS  Google Scholar 

  6. Silva, A. C., Oliveira, F. F. S., Bernardes, D. S., & França, F. P. (2009). Applied Biochemistry and Biotechnology, 153, 58–66.

    Article  Google Scholar 

  7. Volkering, F., Breure, A. M., & Rulkens, W. H. (1998). Biodegradation, 8, 401–417.

    Article  CAS  Google Scholar 

  8. Zhang, H., Xiang, H., Zhang, G., Cao, X., & Meng, Q. (2009). Journal of Hazardous Materials, 167, 217–223.

    Article  CAS  Google Scholar 

  9. Yu, H., Huang, G., An, C., & Wei, J. (2011). Journal of Hazardous Materials, 190, 883–890.

    Article  CAS  Google Scholar 

  10. Vasileva-Tonkova, E., Sotirova, A., & Galabova, D. (2011). Current Microbiology, 62, 427–433.

    Article  CAS  Google Scholar 

  11. Bharali, P., & Konwar, B. K. (2011). Applied Biochemistry and Biotechnology, 164, 1444–1460.

    Article  CAS  Google Scholar 

  12. Lima, D. F., Oliveira, O. M. C., Cruz, M. J. M., Triguis, J. A., & Queiroz, A. F. S. (2012). Open Journal of Marine Science, 2, 119–130.

    Article  Google Scholar 

  13. Dell’Anno, A., Beolchini, F., Rocchetti, L., Luna, G. M., & Danovaro, R. (2012). Environmental Pollution, 167, 85–92.

    Article  Google Scholar 

  14. Barahona, L. M., Vázquez, R. R., Velasco, M. H., et al. (2004). Applied Soil Ecology, 27, 165–175.

    Article  Google Scholar 

  15. Chagas-Spinelli, A. C. O., Kato, M. T., Lima, E. S., & Gavazza, S. (2012). Journal of Environmental Management, 113, 510–516.

    Article  CAS  Google Scholar 

  16. Kitamoto, D., Isoda, H., & Nakahara, T. (2002). Journal of Bioscience and Bioengineering, 94, 187–201.

    CAS  Google Scholar 

  17. Silva, D. M. C., Araújo, J. M., Gavazza, S., Souto-Maior, A. M., & Chagas-Spinelli, A. C. O. (2009). XVII Simpósio Nacional de Bioprocessos [XVII National Symposium on Bioprocesses]. Brazil: Natal RN.

    Google Scholar 

  18. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  19. DuNoüy, P. L. (1919) The Journal of General Physiology 1, 521–524.

  20. Cooper, D. G., & Goldenberger, B. G. (1987). Applied and Environmental Microbiology, 53, 224–229.

    CAS  Google Scholar 

  21. Fernandes, P. A., Arruda, I. R., Santos, A. F. A. B., Araújo, A. A., Souto Maior, A. M., & Ximenes, E. A. (2007). Brazilian Journal of Microbiology, 38, 704–709.

    Article  Google Scholar 

  22. Wentworth, C. K. (1922). Journal of Geology, 30, 377–392.

    Article  Google Scholar 

  23. USEPA – The US Environmental Protection Agency (1996) Method 3540C. Available from www.epa.gov. Accessed 8 April 2009.

  24. USEPA-The US Environmental Protection Agency (1996) Method 3610B. Available from www.epa.gov. Accessed 8 April 2009.

  25. USEPA-The US Environmental Protection Agency (1996) Method 3630C. Available from www.epa.gov. Accessed 8 April 2009.

  26. USEPA-The US Environmental Protection Agency (2007) Method 8270D. Available from www.epa.gov. Accessed 8 April 2009.

  27. Loring, D. H., & Ratala, R. T. T. (1992). Earth-Science Reviews, 32, 235–283.

    Article  CAS  Google Scholar 

  28. Alves, B.J.R., Baêta, A.M. and Alves, J.V. (1999) Protocolo da Embrapa Agrobiologia para Análise de Nitrogênio em Adubos Orgânicos, Solo e Tecidos [Embrapa Agrobiology Protocol for Analyses of Nitrogen in Organic Fertilizers, Soil and Tissue]. Embrapa Agrobiologia. Seropédica, Rio de Janeiro, Brazil.

  29. Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of seawater analysis (3rd ed.). Weinheim: Wiley.

    Book  Google Scholar 

  30. Protazio, L., Tanaka, S. M. C. N., & Cavalcante, P. R. S. (2004). Revista Analytica, 8, 35–41.

    Google Scholar 

  31. CETESB-Companhia de Tecnologia de Saneamento Ambiental de São Paulo (2010) Solo: propriedades [Soil: properties]. Available from www.cetesb.sp.gov.br. Accessed 14 April 2010.

  32. USEPA-The US Environmental Protection Agency (1996) Seminars on bioremediation of hazardous waste sites: practical approaches to implementation. Available from www.epa.gov. Accessed 15 January 2010.

  33. Matthijs, S., Tack, J., van Speybroeck, D., & Koedam, N. (1999). Mangroves and Salt Marshes, 3, 143–249.

    Article  Google Scholar 

  34. Lyimo, T. J., Pol, A., & OpdenCamp, H. J. M. (2002). Western Indian Ocean Journal of Marine Science, 1, 71–80.

    Google Scholar 

  35. Andreote, F. D., Jiménez, D. J., Chaves, D., et al. (2012). PLoS One, 7, 1–14.

    Article  Google Scholar 

  36. Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Environmental Pollution, 133, 71–84.

    Article  CAS  Google Scholar 

  37. Torreiro-Melo, A.G.A.G. (2010), M.Sc thesis, Universidade Federal de Pernambuco [Federal University of Pernambuco], Recife, Brazil.

  38. Souza-Santos, L. P., Pastor, J. M. O., Ferreira, N. G., Costa, W. M., Castro, C. M. V. A., & Santos, P. J. P. (2006). Aquaculture Research, 37, 1516–1523.

    Article  Google Scholar 

  39. Castro, C. M. V. A., Souza-Santos, P., Torreiro, A. G., & Garcia, K. (2009). Brazilian Journal of Oceanography, 57, 33–41.

    Article  Google Scholar 

  40. Ribeiro, A. C. B., & Souza-Santos, L. (2011). Aquaculture, 321, 280–288.

    Article  Google Scholar 

  41. Mrozik, A., Piotrowska-Seget, Z., & Labuzek, S. (2003). Polish Journal of Environmental Studies, 12, 15–25.

    CAS  Google Scholar 

  42. Juhasz, A. L., & Naidu, R. (2000). International Biodeterioration and Biodegradation, 45, 57–88.

    Article  CAS  Google Scholar 

  43. Amellal, N., Portal, J. M., & Berthelin, J. (2001). Applied Geochemistry, 16, 1611–1619.

    Article  CAS  Google Scholar 

  44. Karthikeyan, R. and Bhandari, A. (2001) Journal of Hazardous Substance Research, 3, 3–1 – 3–19.

  45. Coates, J. D., Anderson, R. T., Woodward, J. C., Phillips, J. P., & Lovley, D. R. (1996). Environmental Science and Technology, 30, 2784–2789.

    Article  CAS  Google Scholar 

  46. Coates, J. D., Anderson, R. T., & Lovley, D. R. (1996). Applied and Environmental Microbiology, 62, 1099–1101.

    CAS  Google Scholar 

  47. Coates, J. D., Woodward, J., Allen, J., Philip, P., & Lovley, D. R. (1997). Applied and Environmental Microbiology, 63, 3589–3593.

    CAS  Google Scholar 

  48. Johnson, K., & Ghosh, S. (1998). Water Science and Technology, 38, 41–48.

    Article  CAS  Google Scholar 

  49. Berry, D. F., Francis, A. J., & Bollag, J. M. (1987). Microbiological Reviews, 51, 43–59.

    CAS  Google Scholar 

  50. Atlas, R. M. (1981). Microbial Reviews, 45, 180–209.

    CAS  Google Scholar 

  51. Jorgensen, K. S., Puustinen, J., & Suortti, A. M. (2000). Environmental Pollution, 107, 245–254.

    Article  CAS  Google Scholar 

  52. Dias, J.A. (2004) A análise sedimentar e o conhecimento dos sistemas marinhos: versão preliminar [Sediment analyses and understanding of marine systems: preliminary version]. Available from http://w3.ualg.pt/∼jdias/JAD/eb_Sediment.html. Accessed 21 January 2010.

  53. Chen, J. J., Wong, Y. S., Fung, N., & Tam, Y. (2009). Journal of Hazardous Materials, 168, 1422–1429.

    Article  CAS  Google Scholar 

  54. Bedessem, M. E., Swoboda-Colberg, N. G., & Colberg, P. J. S. (1997). FEMS Microbiology Letters, 152, 213–218.

    Article  CAS  Google Scholar 

  55. Dou, J., Liub, X., & Dinga, A. (2009). Journal of Hazardous Materials, 165, 325–331.

    Article  CAS  Google Scholar 

  56. Desai, A. J., & Banat, I. M. (1997). Microbiology Molecular Review, 61, 47–64.

    CAS  Google Scholar 

  57. Lang, S., & Wullbrandt, D. (1999). Applied Microbiology and Biotechnology, 51, 22–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from a number of Brazilian agencies and institutions, including FINEP, CNPq, CAPES, FACEPE, PETROBRAS, and SUAPE, is greatly appreciated. The authors thank their colleagues in the laboratories LSA-UFPE, LQI-UFPE, LEPETRO-UFBA, and LMA-CTG-SENAI/RN for their help with the analyses and field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario T. Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayer, D.M., Chagas-Spinelli, A.C.O., Gavazza, S. et al. Natural Attenuation and Biosurfactant-Stimulated Bioremediation of Estuarine Sediments Contaminated with Diesel Oil. Appl Biochem Biotechnol 171, 173–188 (2013). https://doi.org/10.1007/s12010-013-0358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0358-0

Keywords

Navigation