Skip to main content
Log in

Bactericidal Effect of Poly(Acrylamide/Itaconic Acid)–Silver Nanoparticles Synthesized by Gamma Irradiation Against Pseudomonas Aeruginosa

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Antimicrobial activity of silver nanoparticles is gaining importance due its broad spectrum of targets in cell compared to conventional antimicrobial agents. In this context, silver nanoparticles were synthesized by gamma irradiation-induced reduction method of acrylamide and itaconic acid with irradiation dose up to 70 kGy. Silver nanoparticles were examined by Fourier-transform infrared, scanning electron microscopic images (SEM), and ultraviolet–visible spectrophotometer. The particle size was determined by X-ray diffraction, transmission electron microscopy (TEM), and dynamic light scattering. The antibacterial effect was studied by disk diffusion method against some bacterial pathogenic strains. Silver nanoparticles showed promising activity against Pseudomonas aeruginosa and slightly active against Escherichia coli, methicillin-resistant Staphylococcus aureus, and Klebsiella pneumonia. The bactericidal effect of silver nanoparticles was tested against P. aeruginosa. The killing rate of P. aeruginosa was found to be 90 % of viability at (100 μl/ml) of silver nanoparticles. Exposure of P. aeruginosa cells to silver nanoparticles caused fast loss of 260 nm absorbing materials and release of potassium ions. The TEM and SEM observation showed that silver nanoparticles may destroy the structure of bacterial cell membrane in order to enter the bacterial cell resulting in the leakage of the cytoplasmic component and the eventual death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tenover, F. C. (2006). American Journal of Medicine, 119, S3–S10.

    Article  CAS  Google Scholar 

  2. Webb, G. F., D’Agata, E. M., Magal, P., & Ruan, S. (2005). Proc Nat Acad Sci, 102, 13343–13348.

    Article  CAS  Google Scholar 

  3. Humberto, H., Lara, V., Ayala-Nunez, N. V., Carmen, L. D., Ixtepan, T., & Cristina, R. P. (2010). World Journal of Microbiology and Biotechnology, 26, 615–621.

    Article  Google Scholar 

  4. Marcato, P. D., & Duran, N. (2008). Journal of Nanoscience and Nanotechnology, 8, 2216–2229.

    Article  CAS  Google Scholar 

  5. Singh, R., & Singh, N. H. (2011). Journal of Biomedical Nanotechnology, 7, 489–503.

    Article  CAS  Google Scholar 

  6. Gemmell, C. G., Edwards, D. I., & Frainse, A. P. (2006). Journal of Antimicrobial Chemotherapy, 57, 589–608.

    Article  CAS  Google Scholar 

  7. Castellano, J. J., Shafii, S. M., Ko, F., Donate, G., Wright, T. E., Mannari, R. J., et al. (2007). International Wound Journal, 4, 14–22.

    Article  Google Scholar 

  8. Chen, X., & Schluesener, H. (2008). Journal of Toxicology Letters, 176, 1–12.

    Article  CAS  Google Scholar 

  9. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., et al. (2007). Nanomedicine: Nanotechnology, Biology and Medicine, 3, 95–101.

    Article  CAS  Google Scholar 

  10. Morones, J. R., Elechiguerra, J. L., Camacho, A., & Ramirez, J. T. (2005). Nanotechnology, 16, 2346–2353.

    Article  CAS  Google Scholar 

  11. Zou, Q., Bao, H. F., Guo, H. W., Zhang, L., Qi, L., Jiang, J. G., et al. (2006). Journal of Colloid and Interface Science, 295, 401–408.

    Article  CAS  Google Scholar 

  12. Ahmed, M. O. E., & Leong, W. K. (2006). Journal of Organo Metallic Chemistry, 691, 1055–1060.

    Article  CAS  Google Scholar 

  13. Lansdown, A. B. (2002). Journal of Wound Care, 11, 125–130.

    CAS  Google Scholar 

  14. Sondi, I., Goia, D. V., & Matijevic, E. J. J. (2003). Colloid and Interface Science, 260, 75–81.

    Article  CAS  Google Scholar 

  15. Temgire, M. K., & Joshi, S. S. (2004). Radiation Physics and Chemistry, 71, 1039–1044.

    Article  CAS  Google Scholar 

  16. Kumar, M., Varshney, L., & Francis, S. (2005). Radiation Physics and Chemistry, 73, 21–27.

    Article  CAS  Google Scholar 

  17. Kassaee, M. Z., Akhavan, A., Sheikh, N., & Beteshobabrud, R. (2008). Radiation Physics and Chemistry, 77, 1074–1078.

    Article  CAS  Google Scholar 

  18. Mohan, Y. M., Vimala, K., Thomas, V., Varaprasad, K., Sreedhar, B., Bajpai, S. K., et al. (2010). Journal of Colloid and Interface Science, 342, 73–82.

    Article  Google Scholar 

  19. Liu, Y., Chen, S., Zhong, L., & Wu, G. (2009). Radiation Physics and Chemistry, 78, 251–255.

    Article  CAS  Google Scholar 

  20. Kumar, R., & Unstedt, H. M. (2005). Biomaterials, 26, 2081–2088.

    Article  CAS  Google Scholar 

  21. Huter, E. E. (1984). Practical electron microscopy. A beginner’s illustrated guide. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Kim, J., Marshall, M. R., & Wie, C. (1995). Journal of Agricultural and Food Chemistry, 43, 2839–2845.

    Article  CAS  Google Scholar 

  23. Pal, S., Tak, Y. K., & Song, J. M. (2007). Applied and Environmental Microbiology, 73, 1712–1720.

    Article  CAS  Google Scholar 

  24. Shahi, S. K., & Patra, M. (2003). Advances in Materials Science, 5, 501–509.

    Google Scholar 

  25. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., et al. (2006). The Journal of Physical Chemistry. B, 110, 16248–16253.

    Article  CAS  Google Scholar 

  26. Belloni, J., Mostafavi, M., Remita, H., Marignier, J. L., & Delcourt, M. O. (1998). New Journal of Chemistry, 22, 1239–1256.

    Article  CAS  Google Scholar 

  27. Karadag, E., Saraydin, D., Sahiner, N., & Güven, O. (2001). Journal of Macromolecular Science Pure and Applied Chemistry, A,38, 1105–1121.

    Google Scholar 

  28. Bajpai, S. K., & Johnson, S. (2005). Reactive and Functional Polymers, 62, 271–283.

    Article  CAS  Google Scholar 

  29. Gupta, P., Bajpai, M., & Bajpai, S. K. (2008). The Journal of Cotton Science, 12, 280–286.

    CAS  Google Scholar 

  30. Xie, J., Liu, X., & Liang, J. (2007). Journal of Applied Polymer Science, 106, 1606–1613.

    Article  CAS  Google Scholar 

  31. Chena, P., Songa, L., Liub, Y., & Fang, Y. (2007). Radiation Physics and Chemistry, 76, 1165–1168.

    Article  Google Scholar 

  32. Murphy, C. J., & Jana, N. R. (2002). Advanced Materials, 14, 80–82.

    Article  CAS  Google Scholar 

  33. Murthy, P. S. K., Mohan, Y. M., Varaprasada, K., Sreedhar, B., & Raju, K. M. (2008). Journal of Colloid and Interface Science, 318, 217–224.

    Article  CAS  Google Scholar 

  34. Eid, M. (2011). Journal of Inorganic and Organometallic Polymers, 21, 297–305.

    Article  CAS  Google Scholar 

  35. Yang, X., Chen, L., Han, B., Yang, X., & Duan, H. (2010). Polymer, 51, 2533–2539.

    Article  CAS  Google Scholar 

  36. Eid, M., El-Arnaouty, M. B., Salah, M., Soliman, E. S., & Hegazy, E. A. (2012). Journal of Polymer Research, 19, 9835–9844.

    Article  Google Scholar 

  37. Rai, M. K., Deshmukh, S. D., Ingle, A. P., & Gade, A. K. (2011). Journal of Applied Microbiology, 112, 841–852.

    Article  Google Scholar 

  38. Percival, S. L., Bowler, P. G., & Dolman, J. (2007). International Wound Journal, 4, 186–191.

    Article  Google Scholar 

  39. Elechiguerra, J. L., Burt, J. L., & Morones, J. R. (2005). Journal of Nanobiotechnology, 3, 1–10.

    Article  Google Scholar 

  40. Sharma, H. S., Hussain, S., Schlager, J., Ali, S. F., & Sharma, A. (2010). Acta Neurochirurgica. Supplementum, 106, 359–364.

    Article  Google Scholar 

  41. Kora, A. J., & Arunachalam, J. (2011). World Journal of Microbiology and Biotechnology, 27, 1209–1216.

    Article  CAS  Google Scholar 

  42. Lu, L., Sun, R. W., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., et al. (2008). Antiviral Therapy, 13, 253–262.

    CAS  Google Scholar 

  43. Yang, W., Shen, C., & Ji, Q. (2009). Nanotechnology, 20, 085–102.

    Google Scholar 

  44. Li, W. R., Xie, X. B., Shi, Q. S., Zeng, H. Y., Ou-Yang, Y. S., & Chen, Y. B. (2010). Applied Microbiology and Biotechnology, 85, 1115–1122.

    Article  CAS  Google Scholar 

  45. Cho, K. H., Park, J. E., Osaka, T., & Park, S. G. (2005). Electrochimica Acta, 51, 956–960.

    Article  CAS  Google Scholar 

  46. Raffi, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., & Hasan, M. M. (2008). Journal of Materials Science and Technology, 24, 192–196.

    CAS  Google Scholar 

  47. Chen, M., Yang, Z., Wu, H., Pan, X., Xie, X., & Wu, C. (2011). International Journal of Nanomedicine, 6, 2873–2877.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eid, M., Araby, E. Bactericidal Effect of Poly(Acrylamide/Itaconic Acid)–Silver Nanoparticles Synthesized by Gamma Irradiation Against Pseudomonas Aeruginosa . Appl Biochem Biotechnol 171, 469–487 (2013). https://doi.org/10.1007/s12010-013-0357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0357-1

Keywords

Navigation