Skip to main content
Log in

Synergistic Antibacterial and Antibiofilm Effect Between (+)-Medioresinol and Antibiotics In Vitro

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, antibacterial effects of (+)-Medioresinol isolated from stem bark of Sambucus williamsii and its synergistic activities in combination with antibiotics such as ampicillin, cefotaxime, and chloramphenicol were tested by antibacterial susceptibility testing and checkerboard assay. (+)-Medioresinol possessed antibacterial effects against antibiotics-susceptible- or antibiotics-resistant strains. Most of combinations between (+)-Medioresinol and each antibiotic showed synergistic interaction (fractional inhibitory concentration index ≤0.5) against bacterial strains including antibiotics-resistant Pseudomonas aeruginosa. Furthermore, the antibiofilm effect of (+)-Medioresinol alone or in combination with each antibiotic was investigated. The results indicated that not only (+)-Medioresinol but also its combination with each antibiotic had antibiofilm activities. It concludes that (+)-Medioresinol has potential as a therapeutic agent and adjuvant for treatment of bacterial infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mesaros, N., Nordmann, P., Plesiat, P., Van Roussel-Delvallez, M., Eldere, J., Glupczynski, Y. V., et al. (2007). Clinical Microbiology and Infection, 13, 560–5787.

    Article  CAS  Google Scholar 

  2. Nishanth Kumar, S., Siji, J. V., Nambisan, B., & Mohandas, C. (2012). World Journal of Microbiology and Biotechnology, 28, 3143–3150.

    Article  Google Scholar 

  3. Beringer, P. M. (1999). Current Opinion in Pulmonary Medicine, 5, 371–377.

    Article  CAS  Google Scholar 

  4. Chung, P. Y., Parasakthi, N., & Chung, L. Y. (2011). Annals of Clinical Microbiology and Antimicrobials, 10, 1–6.

    Article  Google Scholar 

  5. Lee, Y., Jang, K., & Cha, J. (2012). Journal of Biomedicine and Biotechnology, 618081, 1–7.

    Google Scholar 

  6. Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). International Journal of Antimicrobial Agents, 35, 322–332.

    Article  Google Scholar 

  7. Lynch, S. V., Dixon, L., Benoit, M. R., Brodie, E. L., Keyhan, M., Hu, P., et al. (2007). Antimicrobial Agents and Chemotherapy, 51, 3650–3658.

    Article  CAS  Google Scholar 

  8. Liaqat, I., & Sabri, A. N. (2008). Journal of Basic Microbiology, 49, 1–10.

    Google Scholar 

  9. Boyer, J., & Liu, R. H. (2004). Nutrition Journal, 3, 5.

    Article  Google Scholar 

  10. Zakay-Rones, Z., Varsano, N., Zlotnik, M., Manor, O., Regev, L., Schlesinger, M., et al. (1995). Journal of Alternative and Complementary Medicine, 1, 361–369.

    Article  CAS  Google Scholar 

  11. Ahmadiani, A., Fereidoni, M., Semnanian, S., Kamalinejad, M., & Saremi, S. (1998). Journal of Ethnopharmacology, 61, 229–235.

    Article  CAS  Google Scholar 

  12. Xie, F., Wu, C. F., Zhang, Y., Yao, X. S., Cheung, P. Y., Chan, A. S., & Wong, M. S. (2005). Biological and Pharmaceutical Bulletin, 28, 1879–1885.

    Article  CAS  Google Scholar 

  13. Yan, Z. H., Yang, C. H., Wu, X. H., & Xie, Y. Y. (2004). Chinese Chemical Letters, 15, 408–410.

    CAS  Google Scholar 

  14. Hwang, J. H., Hwang, I. S., Liu, Q. H., Woo, E. R., & Lee, D. G. (2012). Biochimie, 94, 1784–1793.

    Article  CAS  Google Scholar 

  15. Li, C. Y., & Li, Y. C. (1999). Acta Pharmaceutica Sinica, 34, 605–607.

    CAS  Google Scholar 

  16. Zhou, L. X., & Dind, Y. (2000). Zhongguo Zhong Yao Za Zhi, 25, 541–543.

    CAS  Google Scholar 

  17. CLSI. (2005). Performance standards for antimicrobial susceptibility testing. Wayne: CLSI.

    Google Scholar 

  18. Eliopoulos, G. M., & Moellering, R. C. (1991). Antimicrobial combinations. In V. Lorian (Ed.), Antibiotics in laboratory medicine (pp. 432–492). Baltimore: Williams & Wilkins.

    Google Scholar 

  19. NCCLS. (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. National committee for clinical Laboratory Standards USA M7-A6.

  20. Pankey, G. A., & Ashcraft, D. S. (2005). Antimicrobial Agents and Chemotherapy, 49, 2959–2964.

    Article  CAS  Google Scholar 

  21. Odds, F. C. (2003). Journal of Antimicrobial Chemotherapy, 52, 1.

    Article  CAS  Google Scholar 

  22. Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M., et al. (1985). Journal of Clinical Microbiology, 22, 996–1006.

    CAS  Google Scholar 

  23. Wei, G. X., Campagna, A. N., & Bobek, L. A. (2006). Journal of Antimicrobial Chemotherapy, 57, 1100–1109.

    Article  CAS  Google Scholar 

  24. Kohanski, M. A., Dwyer, D. J., & Collins, J. J. (2010). Nature Reviews Microbiology, 8, 423–435.

    Article  CAS  Google Scholar 

  25. William, F., Marshall, M. D., Janis, E., & Blair, M. D. (1999). Mayo Clinic Proceedings, 74, 187–195.

    Article  Google Scholar 

  26. An, J., Zuo, G. Y., Haob, X. Y., Wanga, G. C., & Li, Z. S. (2011). Phytomedicine, 18, 990–993.

    Article  CAS  Google Scholar 

  27. Gradelski, E., Valera, L., Bonner, D., & Fung-Tomc, J. (2001). Antimicrobial Agents and Chemotherapy, 45, 3220–3222.

    Article  CAS  Google Scholar 

  28. White, R. L., Burgess, D. S., Manduru, M., & Bosso, J. A. (1996). Antimicrobial Agents and Chemotherapy, 40, 1914–1918.

    CAS  Google Scholar 

  29. Mushtaq, S., Ge, Y., & Livermore, D. M. (2004). Antimicrobial Agents and Chemotherapy, 48, 3086–3092.

    Article  CAS  Google Scholar 

  30. Hancock, R. E. (1985). Antibiotics and Chemotherapy, 36, 95–102.

    CAS  Google Scholar 

  31. Buyck, J. M., Plésiat, P., Traore, H., Vanderbist, F., Van Tulkens, P. M., & Bambeke, F. (2012). Clinical Infectious Diseases, 55, 534–542.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MEST) (no. 2008-0062618).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Gun Lee.

Additional information

Ji Hong Hwang and Hyemin Choi contributed equally to this work and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J.H., Choi, H., Hwang, Is. et al. Synergistic Antibacterial and Antibiofilm Effect Between (+)-Medioresinol and Antibiotics In Vitro. Appl Biochem Biotechnol 170, 1934–1941 (2013). https://doi.org/10.1007/s12010-013-0351-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0351-7

Keywords

Navigation