Skip to main content
Log in

An Efficient Method for Agrobacterium-Mediated Genetic Transformation and Plant Regeneration in Cumin (Cuminum cyminum L.)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cumin is an annual herbaceous medicinally important plant having diverse applications. An efficient and reproducible method of Agrobacterium-mediated genetic transformation was herein established for the first time. A direct regeneration method without callus induction was optimised using embryos as explant material in Gamborg’s B5 medium supplemented with 0.5-μM 6-benzyladenine and 2.0-μM α-naphthalene acetic acid. About 1,020 embryos (a mean of 255 embryos per batch) were used for the optimisation of transformation conditions. These conditions were an Agrobacterium cell suspension of 0.6 OD600, a co-cultivation time of 72 h, 300-μM acetosyringone and wounding of explants using a razor blade. Pre-cultured elongated embryos were treated using optimised conditions. About 720 embryos (a mean of 180 embryos per batch) were used for transformation and 95 % embryos showed transient β-glucuronidase expression after co-cultivation. Putative transformed embryos were cultured on B5 medium for shoot proliferation and 21 regenerated plants were obtained after selection and allowed to root. T0 plantlets showed β-glucuronidase expression and gene integration was confirmed via PCR amplification of 0.96 and 1.28 kb fragments of the hygromycin-phosphotransferase II and β-glucuronidase genes, respectively. In this study, a transformation efficiency of 1.5 % was demonstrated and a total of 11 transgenic plants were obtained at the hardening stage, however, only four plants acclimatised during hardening. Gene copy number was analysed by Southern blot analysis of hardened plants and single-copy gene integration was observed. This is the first successful attempt of Agrobacterium-mediated genetic transformation of cumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johri, R. K. (2011). Pharmacognosy Reviews, 5, 63–72.

    Article  CAS  Google Scholar 

  2. Bettaieb, I., Bourgou, S., Wannes, W. A., Hamrouni, I., Limam, F., & Marzouk, B. (2010). Journal of Agricultural and Food Chemistry, 58, 10410–10418.

    Article  CAS  Google Scholar 

  3. Bettaieb, I., Bourgou, S., Sriti, J., Msaada, K., Limam, F., & Marzouk, B. (2011). Journal of the Science of Food and Agriculture, 91, 2100–2107.

    Article  CAS  Google Scholar 

  4. Einafshar, S., Poorazrang, H., Farhoosh, R., & Seiedi, S. M. (2012). European Journal of Lipid Science and Technology, 114, 168–174.

    Article  CAS  Google Scholar 

  5. Thamaraikannan, M. and Sengottuvel, C. (2012). Cumin: Can India maintain a monopoly? Facts For You 3211–14.

  6. Garg, B. K., Burman, U., & Kathju, S. (2002). Indian Journal of Plant Pathology, 7, 70–74.

    Google Scholar 

  7. Koocheki, A., Mehdi, N. M., & Azizi, G. (2008). Journal of Herbs Spices and Medicinal Plants, 14, 137–153.

    Article  Google Scholar 

  8. Tatari, M. and Alikamar, R. A. (2008), In Proceedings of the second international salinity forum: Salinity, water and society, Global issues, local action, Adelaide, Australia, pp. 1–3.

  9. Singh, N., Mishra, A., Joshi, M., & Jha, B. (2010). Plant Cell Tissue and Organ Culture, 103, 1–6.

    Article  Google Scholar 

  10. Directorate of Agriculture (2012) Agriculture and co-operation department, Govt. of Gujarat, India. http://agri.gujarat.gov.in/hods/dire_agriculture/download/apy_1011_final.pdf. Accessed 7 November 2012.

  11. Hunault, G., Desmarest, P., & Manoir, J. D. (1989). Foeniculum vulgare Miller: cell culture. Regeneration and the production of anethole. In Y. P. S. Bajaj (Ed.), Biotechnology in agriculture and forestry 7: medicinal and aromatic plants II (pp. 185–212). Berlin: Springer.

    Google Scholar 

  12. Baranski, R. (2008). Transgenic Plant Journal, 2, 18–38.

    Google Scholar 

  13. Tawfik, A. A., & Noga, G. (2001). Plant Cell Tissue and Organ Culture, 66, 141–147.

    Article  CAS  Google Scholar 

  14. Tawfik, A. A., & Noga, G. (2002). Plant Cell Tissue and Organ Culture, 69, 35–40.

    Article  CAS  Google Scholar 

  15. Li, R., Stelly, D. M., & Trolinder, N. L. (1989). Genome, 31, 1128–1134.

    Article  Google Scholar 

  16. Stelly, D., Altman, D. W., Kohel, R. J., Rangan, T. S., & Comiskey, E. (1989). Genome, 32, 762–770.

    Article  Google Scholar 

  17. Choi, H. W., Lemaux, P. G., & Cho, M. J. (2000). Crop Science, 40, 524–533.

    Article  Google Scholar 

  18. Bregitzer, P., & Tonks, D. (2003). Crop Science, 43, 4–12.

    Article  CAS  Google Scholar 

  19. Ebrahimie, E., Habashi, A. A., Ghareyazie, B., Ghannadha, M., & Mohammadie, M. (2003). Plant Cell Tissue and Organ Culture, 75, 19–25.

    Article  CAS  Google Scholar 

  20. Ebrahimie, E., Habashi, A. A., Mohammadie-Dehcheshmeh, M., Ghannadha, M., Ghareyazie, B., & Yazdi-Amadi, B. (2006). In Vitro Cellular and Developmental Biology: Plant, 42, 455–460.

    Article  CAS  Google Scholar 

  21. Ebrahimie, E., Naghavi, M. R., Hosseinzadeh, A., Behamta, M. R., Mohammadi-Dehcheshmeh, M., Sarrafi, A., & Spangenberg, G. (2007). Plant Cell Tissue and Organ Culture, 90, 293–311.

    Article  Google Scholar 

  22. Tzfira, T., & Citovsky, V. (2006). Current Opinion in Biotechlogy, 17, 147–154.

    Article  CAS  Google Scholar 

  23. Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  24. Joshi, M., Mishra, A., & Jha, B. (2011). Industrial Crops and Products, 33, 67–77.

    Article  CAS  Google Scholar 

  25. Joshi, M., Mishra, A., & Jha, B. (2012). Industrial Crops and Products, 35, 313–316.

    Article  CAS  Google Scholar 

  26. Jefferson, R. A. (1987). Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  27. Doyle, J. J., & Doyle, J. L. (1987). Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  28. Komari, T. and Kubo, T. (1999), Advances in cellular and molecular biology of plants, vol. 5: Molecular improvement of cereal crops (Vasil, I. K., ed.), (pp. 43–83) Dordrecht: Kluwer Academic Publishers

  29. Shou, H., Frame, B. R., Whittham, S. A., & Wang, K. (2004). Molecular Breeding, 13, 201–208.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support received from CSIR, New Delhi (BSC0107–PlaGen) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Avinash Mishra or Bhavanath Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, S., Mishra, A., Patel, M.K. et al. An Efficient Method for Agrobacterium-Mediated Genetic Transformation and Plant Regeneration in Cumin (Cuminum cyminum L.). Appl Biochem Biotechnol 171, 1–9 (2013). https://doi.org/10.1007/s12010-013-0349-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0349-1

Keywords

Navigation