Skip to main content
Log in

Production and Properties of Two Novel Exopolysaccharides Synthesized by a Thermophilic Bacterium Aeribacillus pallidus 418

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Synthesis of innovative exocellular polysaccharides (EPSs) was reported for few thermophilic microorganisms as one of the mechanisms for surviving at high temperature. Thermophilic aerobic spore-forming bacteria able to produce exopolysaccharides were isolated from hydrothermal springs in Bulgaria. They were referred to four species, such as Aeribacillus pallidus, Geobacillus toebii, Brevibacillus thermoruber, and Anoxybacillus kestanbolensis. The highest production was established for the strain 418, whose phylogenetic and phenotypic properties referred it to the species A. pallidus. Maltose and NH4Cl were observed to be correspondingly the best carbon and nitrogen sources and production yield was increased more than twofold in the process of culture condition optimization. After purification of the polymer fraction, a presence of two different EPSs, electroneutral EPS 1 and negatively charged EPS 2, in a relative weight ratio 3:2.2 was established. They were heteropolysaccharides consisting of unusual high variety of sugars (six for EPS 1 and seven for EPS 2). Six of the sugars were common for both EPSs. The main sugar in EPS 1 was mannose (69.3 %); smaller quantities of glucose (11.2 %), galactosamine (6.3 %), glucosamine (5.4 %), galactose (4.7 %), and ribose (2.9 %) were also identified. The main sugar in EPS 2 was also mannose (33.9 %), followed by galactose (17.9 %), glucose (15.5 %), galactosamine (11.7 %), glucosamine (8.1 %), ribose (5.3 %), and arabinose (4.9 %). Both polymers showed high molecular weight and high thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sutherland, I. W. (2001). Microbial polysaccharide from Gram-negative bacteria. International Dairy Journal, 11, 663–674.

    Article  CAS  Google Scholar 

  2. De Vuyst, L., De Vin, F., Vaningelgam, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal, 11, 687–707.

    Article  Google Scholar 

  3. Sutherland, I. W. (1997). Microbial exopolysaccharides-structural subtleties and their consequences. Pure and Applied Chemistry, 69, 1911–1917.

    Article  CAS  Google Scholar 

  4. Guezennec, J. (2002). Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? Journal of Industrial Microbiology and Biotechnology, 29, 204–208.

    Article  CAS  Google Scholar 

  5. Kornmann, H., Duboc, P., Marison, J., & Von Stockar, U. (2003). Influence of nutritional factors on the nature, yield, and composition of exopolysaccharides produced by Gluconacetobacter xylinus I-2281. Applied and Environmental Microbiology, 69, 6091–6098.

    Article  CAS  Google Scholar 

  6. Nicolaus, B., Kambourova, M., & Oner, E. T. (2010). Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environmental Technology, 31, 1145–1158.

    Article  CAS  Google Scholar 

  7. Rainey, F. A., Fritze, D., & Stackebrandt, E. (1994). The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiology Letters, 115, 205–212.

    Article  CAS  Google Scholar 

  8. Maugeri, T. L., Gugliandolo, C., Caccamo, D., Stackebrandt, E., & Polyphasic, A. (2001). Taxonomic study of thermophilic bacilli from shallow, marine vents. Systematic and Applied Microbiology, 24, 572–587.

    Article  CAS  Google Scholar 

  9. Arena, A., Maugeri, T. L., Pavone, B., Iannello, D., Gugliandolo, C., & Bisignano, G. (2006). Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. International Immunopharmacology, 6, 8–13.

    Article  CAS  Google Scholar 

  10. Arena, A., Gugliandolo, C., Stassi, G., Pavone, B., Iannello, D., Bisignano, G., et al. (2009). An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunology Letters, 123, 132–137.

    Article  CAS  Google Scholar 

  11. Kambourova, M., Mandeva, R., Dimova, D., Poli, A., Nicolaus, B., & Tommonaro, G. (2009). Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydrate Polymers, 77, 338–343.

    Article  CAS  Google Scholar 

  12. Zeigler, D. R. (2001). The genus Geobacillus. Introduction and strain catalog. In catalog of strains, 7th edition, vol. 3, Bacillus Genetic Stock Center, The Ohio State University, US, pp. 1–25.

  13. Manca, M. C., Lama, L., Improta, R., Esposito, E., Gambacorta, A., & Nicolaus, B. (1996). Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus. Applied and Environmental Microbiology, 62, 3265–3269.

    CAS  Google Scholar 

  14. Nicolaus, B., Moriello, V., Maugeri, T., Gugliandolo, C., & Gambacorta, A. (2003). Bacilli from shallow mediterraneae marine vents producers of exopolysaccharides. Recent Research Developments in Microbiology, 7, 197–208.

    CAS  Google Scholar 

  15. Ramanathan, T., Ahmad, A., Ahmad, A. S., & Kalimutho, M. (2011). Taxonomical identity and polysaccharide produced by Bacillus species isolated from old aged medicinal decoctions. Journal of Sports Science and Medicine, 6, 2–9.

    CAS  Google Scholar 

  16. Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    CAS  Google Scholar 

  17. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  18. Smibert, R., & Krieg, N. (1981). General characteristics. In P. Gerhardt, R. Murray, R. Costilow, E. Nester, W. Wood, & G. Phillips (Eds.), Manual of methods for general bacteriology, third edition (pp. 7–243). Washington, DC: American Society for Microbiology.

    Google Scholar 

  19. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric methods for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  20. Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54, 484–489.

    Article  CAS  Google Scholar 

  21. NIST (2008). Scientific Instrument Services. Supplies and Services for Mass Spectrometers, Gas Chromatographs and Liquid Chromatograms. http://www.sisweb.com/software/ms/nist.htm.

  22. Banat, I. M., Marchant, R., & Rahman, T. J. (2004). Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 54, 2197–2201.

    Article  CAS  Google Scholar 

  23. Logan, N. A., DeVos, P., & Dinsdale, A. (2009). Genus VII. Geobacillus. In P. De Vos, G. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K. H. Schleifer, & W. B. Whitman (Eds.), Bergey’s manual of systematic bacteriology, second edition (Vol. 3, pp. 144–159). New York: Springer.

    Google Scholar 

  24. Miñana-Galbis, D., Pinzón, D. L., Lorén, J. G., Manresa, A., & Oliart-Ros, R. M. (2010). Reclassification of Geobacillus pallidus (Scholz et al. 1988) Banat et al. 2004 as Aeribacillus pallidus gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 60, 1600–1604.

    Article  Google Scholar 

  25. Scholz, T., Demharter, W., Hensel, R., & Kandler, O. (1987). Bacillus pallidus sp. nov., a new thermophilic species from sewage. Systematic and Applied Microbiology, 9, 91–96.

    Article  CAS  Google Scholar 

  26. Zheng, C., Li, Z., Su, J., Zhang, R., Liu, C., & Zhao, M. (2012). Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. Journal of Applied Microbiology, 113, 44–51.

    Article  CAS  Google Scholar 

  27. Dreveton, E., Monot, F., Ballerni, D., Lecourtier, J., & Choplin, L. (1994). Effect of mixing and mass transfer conditions on gellan production by P. elodea. Journal of Fermentation and Bioengineering, 77, 642–649.

    Article  CAS  Google Scholar 

  28. Racine, M., Dumont, J., Champagne, C. P., & Morin, A. (1991). Production and characterization of the polysaccharide from Propionibacterium acidi-propionici on whey based media. Journal of Applied Bacteriology, 71, 233–238.

    Article  CAS  Google Scholar 

  29. Ramana, K. V., Tomar, A., & Singh, L. (2000). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World Journal of Microbiology and Biotechnology, 16, 245–248.

    Article  CAS  Google Scholar 

  30. Banik, R. M., Kanari, B., & Upadhyay, S. N. (2000). Exopolysaccharide of the gellan family: prospects and potential. World Journal of Microbiology and Biotechnology, 16, 407–414.

    Article  CAS  Google Scholar 

  31. Kalogiannis, S., Iakovidou, G., Liakopoulou-Kyriakides, M., Kyriakidis, D. A., & Skaracis, G. N. (2003). Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochemistry, 39, 249–256.

    Article  CAS  Google Scholar 

  32. Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., & Yoshinaga, F. (1996). A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Bioscience, Biotechnology, and Biochemistry, 60, 575–579.

    Article  CAS  Google Scholar 

  33. Survase, S. A., Saudagar, P. S., & Singhal, R. S. (2007). Use of complex media for the production of scleroglucan by Sclerotium rolfsii MTCC 2156. Bioresource Technology, 98, 1509–1512.

    Article  CAS  Google Scholar 

  34. Raguénès, G., Christen, R., Guezennec, J., Pignet, P., & Barbier, G. (1997). Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. International Journal of Systematic Bacteriology, 47, 989–995.

    Article  Google Scholar 

  35. Conti, E., Flaibani, A., O’Regan, M., & Sutherland, I. W. (1994). Alginate from Pseudomonas fluorescence and P. putida: production and properties. Microbiology, 140, 1125–1132.

    Article  CAS  Google Scholar 

  36. Majumdar, I., D’Souza, F., & Bhosle, N. B. (1999). Microbial exopolysaccharides: effect on corrosion and partial chemical characterization. Journal of the Indian Institute of Science, 79, 539–550.

    CAS  Google Scholar 

  37. Sutherland, I. (1990). Exopolysaccharide structure. In Biotechnology of microbial exopolysaccharides, Cambridge study in Biotechnology, v. 9, Cambridge University Press, pp. 20–37.

  38. Bhaskar, P. V., & Bhosle, N. B. (2005). Microbial extracellular polymeric substances in marine biogeochemical processes. Current Science, 88, 45–53.

    CAS  Google Scholar 

  39. Vanfossen, A. L., Lewis, D. L., Nichols, J. D., & Kelly, R. M. (2008). Polysaccharide degradation and synthesis by extremely thermophilic anaerobes. Annals of the New York Academy of Sciences, 1125, 322–337.

    Article  CAS  Google Scholar 

  40. Maugeri, T. L., Gugliandolo, C., Caccamo, D., Panico, A., Lama, L., Gambacorta, A., et al. (2002). A halophilic thermotollerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharides. Biotechnology Letters, 24, 515–519.

    Article  CAS  Google Scholar 

  41. Sutherland, I. W. (1999). Polysaccharases in biofilms-source-action-consequences! In J. Wingender, T. R. Neu, & H. C. Flemming (Eds.), Microbial extracellular polymeric substances (pp. 201–230). Berlin: Springer.

    Chapter  Google Scholar 

  42. Hoagland, K. D., Rosowski, J. R., Gretz, M. R., & Roemer, S. C. (1993). Diatom extracellular polymeric substances: function, fine structure, chemistry, and physiology. Journal of Phycology, 29, 537–566.

    Article  CAS  Google Scholar 

  43. Corsaro, M. M., Grant, W. D., Grant, S., Marciano, C. E., & Parrilli, M. (1999). Structure determination of an exopolysaccharide from an alkaliphilic bacterium closely related to Bacillus spp. European Journal of Biochemistry, 264, 554–561.

    Article  CAS  Google Scholar 

  44. Spanò, A., Gugliandolo, C., Lentini, V., Maugeri, T. L., Anzelmo, G., Poli, A., et al. (2013). A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Current Microbiology. doi:10.1007/s00284-013-0327-4.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Fund for Scientific Research, Bulgaria for financial support of this work (Contract DTK 02/46).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Kambourova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radchenkova, N., Vassilev, S., Panchev, I. et al. Production and Properties of Two Novel Exopolysaccharides Synthesized by a Thermophilic Bacterium Aeribacillus pallidus 418. Appl Biochem Biotechnol 171, 31–43 (2013). https://doi.org/10.1007/s12010-013-0348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0348-2

Keywords

Navigation