Skip to main content

Advertisement

Log in

Predicting the Impact of Deleterious Mutations in the Protein Kinase Domain of FGFR2 in the Context of Function, Structure, and Pathogenesis—a Bioinformatics Approach

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Fibroblast growth factor receptor 2 (FGFR2) controls a wide range of biological functions by regulating the cellular proliferation, survival, migration and differentiation. A growing body of preclinical data demonstrated that deregulation of the FGFR signalling through genetic modification was observed in various types of cancers. However, the extent to which genetic modifications interfere with gene regulation and their involvement in cancer susceptibility remains largely unknown. In this work, we performed in silico profiling of harmful non-synonymous single nucleotide polymorphisms (SNPs) in the protein kinase domain of FGFR2. Tolerance index, position-specific independent count score, change in free energy score (ΔΔG), Eris and FoldX indicated that seven mutations were found to be deleterious and may alter the protein function and structure. Furthermore, based on physico-chemical properties, two mutations K659N and R747H were found to be most deleterious in protein kinase domain and taken for further structural analysis. Docking study showed a complete loss of binding affinity followed by interference in hydrogen bonding and surrounding residues due to K659N and R747H mutations. In order to elucidate the mechanism behind the impact of mutation that can generate a ripple effect throughout the protein structure and ultimately affect the function, in-depth molecular dynamics simulation and principal component analysis were performed. The obtained results indicate that K659N and R747H mutations have a distinct effect on the dynamic behaviour of FGFR2 protein. Our strategy may be helpful for understanding SNP effects on proteins with function and their role in human genetic diseases and for the development of novel pharmacological strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SNP:

Single nucleotide polymorphism

nsSNPs:

Non-synonymous single nucleotide polymorphisms

GWAS:

Genome-wide association studies

aa:

Amino acid

AS:

Apert syndrome

FGFRs:

Fibroblast growth factor receptor

FGFR2:

Fibroblast growth factor receptor 2

KD4v:

Comprehensible Knowledge Discovery System for Missense Variant

MD:

Molecular dynamics

MSV3d:

Missense variant mapped to 3D structure

NCBI:

National Centre for Biological Information

OMIM:

Online Mendelian Inheritance in Man

PSIC:

Position-specific independent count

ΔΔG :

Change in free energy

SIFT:

Sorting Intolerant From Tolerant

PolyPhen 2.0:

Polymorphism Phenotyping V 2.0

PCA:

Principal component analysis

PDB:

Protein Data Bank

BLAST:

Basic local alignment search tool

SVM:

Support vector machine

ILP:

Induction logic programming

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

SASA:

Solvent accessibility surface area

References

  1. McIntosh, I., Bellus, G. A., & Jabs, E. W. (2000). Cell Structure and Function, 25, 85–96.

    Article  CAS  Google Scholar 

  2. Ibrahimi, O. A., Eliseenkova, A. V., Plotnikov, A. N., Yu, K., Ornitz, D. M., et al. (2001). Proceedings of the National Academy of Sciences of the United States of America, 98, 7182–7187.

    Article  CAS  Google Scholar 

  3. Johnson, D., Wall, S. A., Mann, S., & Wilkie, A. O. (2000). European Journal of Human Genetics, 8, 571–577.

    Article  CAS  Google Scholar 

  4. Rutland, P., Pulleyn, L. J., Reardon, W., Baraitser, M., & Hayward, R. (1995). Nature Genetics, 9, 173–176.

    Article  CAS  Google Scholar 

  5. Lemmon, M. A., & Schlessinger, J. (2010). Cell, 141, 1117–1134.

    Article  CAS  Google Scholar 

  6. Easton, D. F., Pooley, K. A., Dunning, A. M., Pharoah, P. D., Thompson, D., et al. (2007). Nature, 447, 1087–1093.

    Article  CAS  Google Scholar 

  7. Hunter, D. J., Kraft, P., Jacobs, K. B., Cox, D. G., Yeager, M., et al. (2007). Nature Genetics, 39, 870–874.

    Article  CAS  Google Scholar 

  8. Huijts, P. E., Vreeswijk, M. P., Kroeze-Jansema, K. H., Jacobi, C. E., Seynaeve, C., et al. (2007). Breast Cancer Research, 9, R78.

    Article  Google Scholar 

  9. Luu, T.D., Rusu, A., Walter, V., Linard, B., Poidevin, L., et al. (2012). Nucleic Acids Research, (Web Server issue), W71-5.

  10. Natarajan, K., & Senapati, S. (2012). PloS One, 7(8), e42351.

    Article  CAS  Google Scholar 

  11. Gozgit, J. M., Wong, M. J., Moran, L., Wardwell, S., Mohemmad, Q. K., et al. (2012). Molecular Cancer Therapeutics, 11, 690–699.

    Article  CAS  Google Scholar 

  12. Amberger, J., Bocchini, C. A., Scott, A. F., & Hamosh, A. (2009). Nucleic Acids Research, 37, D793–D796.

    Article  CAS  Google Scholar 

  13. Sherry, S. T., Ward, M., & Sirotkin, K. (2001). Nucleic Acids Research, 29, 308–311.

    Article  CAS  Google Scholar 

  14. Amos, B., & Rolf, A. (1996). Nucleic Acids Research, 24, 21–25.

    Article  Google Scholar 

  15. Ng, P. C., & Henikoff, S. (2003). Nucleic Acids, 31, 3812–3814.

    Article  CAS  Google Scholar 

  16. Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., et al. (2010). Nature Methods, 7, 248–249.

    Article  CAS  Google Scholar 

  17. Capriotti, E., Fariselli, P., Rossi, I., & Casadio, R. (2008). BMC Bioinformatics, 9, 2–S6.

    Article  Google Scholar 

  18. Guerois, R., Nielsen, J. E., & Serrano, L. (2002). Journal of Molecular Biology, 320, 369–387.

    Article  CAS  Google Scholar 

  19. Yin, S., Ding, F., & Dokholyan, N. V. (2007). Nature Methods, 4, 466–467.

    Article  CAS  Google Scholar 

  20. Chen, H., Xu, C. F., Ma, J., Eliseenkova, A. V., Li, W., et al. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 19660–19665.

    Article  CAS  Google Scholar 

  21. Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., et al. (1998). Journal of Computational Chemistry, 19, 1639–1662.

    Article  CAS  Google Scholar 

  22. DeLano, W.L., (2002). DeLano Scientific LLC, San Carlos

  23. Berendsen, H. J. C., Van der Spoel, D., & Van Drunen, R. (1995). Physics Communications, 91, 43–56.

    Article  CAS  Google Scholar 

  24. Schüttelkopf, A. W., & van Aalten, D. M. (2004). Acta Crystallographica, 60, 1355–1363.

    Article  Google Scholar 

  25. Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Proteins, 17, 412–425.

    Article  CAS  Google Scholar 

  26. Mendell, J. T., & Dietz, H. C. (2011). Cell, 107, 411–414.

    Article  Google Scholar 

  27. Stenson, P. D., Mort, M., Ball, E. V., Howells, K., Phillips, A. D., et al. (2008). Genome Med, 22, 1–13.

    Google Scholar 

  28. Rajith, B., & George, P. D. C. (2011). PloS One, 6(9), e24607.

    Article  CAS  Google Scholar 

  29. George, P. D. C., & Rajith, B. (2012). PloS One, 7(4), e34573.

    Article  Google Scholar 

  30. Thusberg, J., & Vihinen, M. (2009). Human Mutation, 30, 703–714.

    Article  CAS  Google Scholar 

  31. Hicks, S., Wheeler, D. A., Plon, S. E., & Kimmel, M. (2011). Human Mutation, 6, 661–668.

    Article  Google Scholar 

  32. Cline, M. S., & Karchin, R. (2010). Bioinformatics, 27, 441–448.

    Article  Google Scholar 

  33. Jordan, D. M., Ramensky, V. E., & Sunyaev, S. R. (2010). Current Opinion in Structural Biology, 20, 342–350.

    Article  CAS  Google Scholar 

  34. Fetrow, J. S., Knutson, S. T., & Edgell, M. H. (2006). Proteins, 63, 356–372.

    Article  CAS  Google Scholar 

  35. Le, L., Lee, E., Schulten, K., & Truong, T. N. (2009). PLoS Curr, 1, RRN1015.

    Article  Google Scholar 

  36. Salsbury, F. R., Jr., Crowder, M. W., Kingsmore, S. F., & Huntley, J. J. (2009). Journal of Molecular Modeling, 15, 133–145.

    Article  CAS  Google Scholar 

  37. Kan, S. H., Elanko, N., Johnson, D., Cornejo-Roldan, L., Cook, J., et al. (2002). The American Journal of Human Genetics, 70, 472–486.

    Article  CAS  Google Scholar 

  38. Chen, H., Ma, J., Li, W., Eliseenkova, A. V., Xu, C., et al. (2007). Molecular Cell, 27, 717–730.

    Article  Google Scholar 

  39. Greulich, H., & Pollock, P. M. (2011). Trends in Molecular Medicine, 7, 283–292.

    Article  Google Scholar 

  40. Turner, N., & Grose, R. (2010). Nature Reviews. Cancer, 10, 116–129.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors take this opportunity to thank the management of Vellore Institute of Technology University for providing the facilities and encouragement to carry out this work.

Conflict of Interest

The authors declare that we do not have a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Priya Doss C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

C, G.P.D., Rajith, B. & Chakraborty, C. Predicting the Impact of Deleterious Mutations in the Protein Kinase Domain of FGFR2 in the Context of Function, Structure, and Pathogenesis—a Bioinformatics Approach. Appl Biochem Biotechnol 170, 1853–1870 (2013). https://doi.org/10.1007/s12010-013-0315-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0315-y

Keywords

Navigation