Applied Biochemistry and Biotechnology

, Volume 170, Issue 7, pp 1751–1766 | Cite as

Coexpression of CPR from Various Origins Enhances Biotransformation Activity of Human CYPs in S. pombe

  • Ina Neunzig
  • Maria Widjaja
  • Frank T. Peters
  • Hans H. Maurer
  • Alain Hehn
  • Frédéric Bourgaud
  • Matthias Bureik


Cytochrome P450 enzymes (CYPs or P450s) are the most important enzymes involved in the phase I metabolism of drugs (and other xenobiotics) in humans, and the corresponding drug metabolites are needed as reference substances for their structural confirmation and for pharmacological or toxicological characterization. We have previously shown that biotechnological synthesis of such metabolites is feasible by whole-cell biotransformation with human CYPs recombinantly expressed in the fission yeast Schizosaccharomyces pombe. It was the aim of this study to compare the activity of seven human microsomal CYPs (CYP2C9, CYP2D6, CYP3A4, CYP3A5, CYP3A7, CYP17, and CYP21) upon coexpression with NADPH-cytochrome P450 oxidoreductases (CPRs) from various origins, namely, human CPR (hCPR) and its homologues from fission yeast (ccr1) and the bishop’s weed Ammi majus (AmCPR), respectively. For this purpose, 28 recombinant strains were needed, with five of them having been constructed previously and 23 strains being newly constructed. Bioconversion experiments showed that coexpression of a CPR does not only influence the reaction rate but, in some cases, also exerts an influence on the metabolite pattern. For CYP3A enzymes, coexpression of hCPR yielded the best results, while for another two, hCPR was equally helpful as ccr1 (both CYP17 and CYP21) or AmCPR (CYP17 only), respectively. Interestingly, CYP2D6 displayed its highest activity when coexpressed with ccr1 and CYP2C9 with AmCPR. These results corroborate the view of CPR as a well-suited bio-brick in synthetic biology for the construction of artificial enzyme complexes.


Biocatalysis Cytochrome P450 reductase Recombinant fission yeast Strain development Whole-cell biotransformation 


  1. 1.
    Bernhardt, R. (2006). Journal of Biotechnology, 124, 128–145.CrossRefGoogle Scholar
  2. 2.
    Guengerich, F. P. (2008). Chemical Research in Toxicology, 21, 70–83.CrossRefGoogle Scholar
  3. 3.
    Larbat, R., Kellner, S., Specker, S., Hehn, A., Gontier, E., Hans, J., et al. (2007). Journal of Biological Chemistry, 282, 542–554.CrossRefGoogle Scholar
  4. 4.
    Hannemann, F., Bichet, A., Ewen, K. M., & Bernhardt, R. (2007). Biochimica et Biophysica Acta, 1770, 330–344.CrossRefGoogle Scholar
  5. 5.
    Guengerich, F. P., & Cheng, Q. (2011). Pharmacological Reviews, 63, 684–699.CrossRefGoogle Scholar
  6. 6.
    Park, B. K., Boobis, A., Clarke, S., Goldring, C. E., Jones, D., Kenna, J. G., et al. (2011). Nature Reviews Drug Discovery, 10, 292–306.CrossRefGoogle Scholar
  7. 7.
    Dragan, C.A., Peters, F.T., Bour, P., Schwaninger, A.E., Schaan, S.M., Neunzig, I., Widjaja, M., Zapp, J., Kraemer, T., Maurer, H.H., and Bureik, M. (2011) Appl Biochem Biotechnol Google Scholar
  8. 8.
    Zollner, A., Buchheit, D., Meyer, M. R., Maurer, H. H., Peters, F. T., & Bureik, M. (2010). Bioanalysis, 2, 1277–1290.CrossRefGoogle Scholar
  9. 9.
    Peters, F. T., Dragan, C. A., Wilde, D. R., Meyer, M. R., Zapp, J., Bureik, M., et al. (2007). Biochemical Pharmacology, 74, 511–520.CrossRefGoogle Scholar
  10. 10.
    Zehentgruber, D., Dragan, C. A., Bureik, M., & Lütz, S. (2010). Journal of Biotechnology, 146, 179–185.CrossRefGoogle Scholar
  11. 11.
    Neunzig, I., Widjaja, M., Dragan, C. A., Peters, F. T., Maurer, H. H., & Bureik, M. (2012). Applied Biochemistry and Biotechnology, 168, 785–796.CrossRefGoogle Scholar
  12. 12.
    Hakki, T., Zearo, S., Dragan, C. A., Bureik, M., & Bernhardt, R. (2008). Journal of Biotechnology, 133, 351–359.CrossRefGoogle Scholar
  13. 13.
    Haas, E., Horecker, B. L., & Hogness, T. R. (1940). Journal of Biological Chemistry, 136, 747–774.Google Scholar
  14. 14.
    Wang, M., Roberts, D. L., Paschke, R., Shea, T. M., Masters, B. S., & Kim, J. J. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 8411–8416.CrossRefGoogle Scholar
  15. 15.
    Xia, C., Panda, S. P., Marohnic, C. C., Martasek, P., Masters, B. S., & Kim, J. J. (2011). Proceedings of the National Academy of Sciences of the United States of America, 108, 13486–13491.CrossRefGoogle Scholar
  16. 16.
    Miller, W. L., & Auchus, R. J. (2011). Endocrine Reviews, 32, 81–151.CrossRefGoogle Scholar
  17. 17.
    Szczebara, F. M., Chandelier, C., Villeret, C., Masurel, A., Bourot, S., Duport, C., et al. (2003). Nature Biotechnology, 21, 143–149.CrossRefGoogle Scholar
  18. 18.
    Miles, J. S. (1992). Biochemistry Journal, 287, 195–200.Google Scholar
  19. 19.
    Wood, V., Gwilliam, R., Rajandream, M. A., Lyne, M., Lyne, R., Stewart, A., et al. (2002). Nature, 415, 871–880.CrossRefGoogle Scholar
  20. 20.
    Fang, Y., Hu, L., Zhou, X., Jaiseng, W., Zhang, B., Takami, T., et al. (2012). Antimicrobial Agents and Chemotherapy, 56, 1949–1959.CrossRefGoogle Scholar
  21. 21.
    Hughes, A. L., Powell, D. W., Bard, M., Eckstein, J., Barbuch, R., Link, A. J., et al. (2007). Cell Metabolism, 5, 143–149.CrossRefGoogle Scholar
  22. 22.
    Morant, M., Bak, S., Moller, B. L., & Werck-Reichhart, D. (2003). Current Opinion in Biotechnology, 14, 151–162.CrossRefGoogle Scholar
  23. 23.
    Jensen, K., & Moller, B. L. (2010). Phytochemistry, 71, 132–141.CrossRefGoogle Scholar
  24. 24.
    Mizutani, M., & Ohta, D. (1998). Plant Physiology, 116, 357–367.CrossRefGoogle Scholar
  25. 25.
    Ro, D. K., Ehlting, J., & Douglas, C. J. (2002). Plant Physiology, 130, 1837–1851.CrossRefGoogle Scholar
  26. 26.
    Bak, S., Olsen, C. E., Halkier, B. A., & Moller, B. L. (2000). Plant Physiology, 123, 1437–1448.CrossRefGoogle Scholar
  27. 27.
    Tattersall, D. B., Bak, S., Jones, P. R., Olsen, C. E., Nielsen, J. K., Hansen, M. L., et al. (2001). Science, 293, 1826–1828.CrossRefGoogle Scholar
  28. 28.
    Selim, Y. A., & Ouf, N. H. (2012). Org Med Chem Lett, 2, 1.CrossRefGoogle Scholar
  29. 29.
    Sambrook, J. R., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. Woodbury: CSHL.Google Scholar
  30. 30.
    Dragan, C. A., Zearo, S., Hannemann, F., Bernhardt, R., & Bureik, M. (2005). FEMS Yeast Research, 5, 621–625.CrossRefGoogle Scholar
  31. 31.
    Maundrell, K. (1993). Gene, 123, 127–130.CrossRefGoogle Scholar
  32. 32.
    Maundrell, K. (1990). Journal of Biological Chemistry, 265, 10857–10864.Google Scholar
  33. 33.
    Suga, M., & Hatakeyama, T. (2005). Yeast, 22, 799–804.CrossRefGoogle Scholar
  34. 34.
    Neunzig, I., Dragan, C. A., Widjaja, M., Schwaninger, A. E., Peters, F. T., Maurer, H. H., et al. (2011). Biochimica et Biophysica Acta, 1814, 161–167.CrossRefGoogle Scholar
  35. 35.
    Neunzig, I., Gohring, A., Dragan, C. A., Zapp, J., Peters, F. T., Maurer, H. H., et al. (2012). Journal of Biotechnology, 157, 417–420.CrossRefGoogle Scholar
  36. 36.
    Parr, M. K., Zöllner, A., Fusshöller, G., Opfermann, G., Schlörer, N., Zorio, M., et al. (2012). Toxicology Letters, 213, 381–391.CrossRefGoogle Scholar
  37. 37.
    Kitada, M., Kamataki, T., Itahashi, K., Rikihisa, T., & Kanakubo, Y. (1987). Journal of Biological Chemistry, 262, 13534–13537.Google Scholar
  38. 38.
    Stevens, J. C., Hines, R. N., Gu, C., Koukouritaki, S. B., Manro, J. R., Tandler, P. J., et al. (2003). Journal of Pharmacology and Experimental Therapeutics, 307, 573–582.CrossRefGoogle Scholar
  39. 39.
    Peters, F.T., Schwaninger, A.E., Sauer, C., Fritschi, G., Dragan, C.A., Bureik, M., & Maurer, H. H. (2007) Isolation and purification of the designer drug metabolite O-desethyl-N-(1-phenylcyclohexyl)-3-ethoxypropanamine (O-desethyl-PCEPA) biotechnologically synthesized using fission yeast expressing CYP2D6. In: F. Pragst & R. Aderjan (Eds.), XV. GTFCh–Symposium, Gesellschaft für Toxikologische und Forensische Chemie, Mosbach, GermanyGoogle Scholar
  40. 40.
    Zöllner, A., Parr, M. K., Dragan, C. A., Dras, S., Schlorer, N., Peters, F. T., et al. (2010). Biological Chemistry, 391, 119–127.CrossRefGoogle Scholar
  41. 41.
    Dragan, C. A., Hartmann, R. W., & Bureik, M. (2006). Journal of Enzyme Inhibition and Medicinal Chemistry, 21, 547–556.CrossRefGoogle Scholar
  42. 42.
    Dragan, C. A., Blank, L. M., & Bureik, M. (2006). Yeast, 23, 779–794.CrossRefGoogle Scholar
  43. 43.
    Bureik, M., Schiffler, B., Hiraoka, Y., Vogel, F., & Bernhardt, R. (2002). Biochemistry, 41, 2311–2321.CrossRefGoogle Scholar
  44. 44.
    Peters, F. T., Dragan, C. A., Schwaninger, A. E., Sauer, C., Zapp, J., Bureik, M., et al. (2009). Forensic Science International, 184, 69–73.CrossRefGoogle Scholar
  45. 45.
    Marohnic, C. C., Panda, S. P., McCammon, K., Rueff, J., Masters, B. S., & Kranendonk, M. (2010). Drug Metabolism and Disposition, 38, 332–340.CrossRefGoogle Scholar
  46. 46.
    Tomalik-Scharte, D., Maiter, D., Kirchheiner, J., Ivison, H. E., Fuhr, U., & Arlt, W. (2010). European Journal of Endocrinology, 163, 919–924.CrossRefGoogle Scholar
  47. 47.
    Huang, N., Agrawal, V., Giacomini, K. M., & Miller, W. L. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 1733–1738.CrossRefGoogle Scholar
  48. 48.
    Sandee, D., Morrissey, K., Agrawal, V., Tam, H. K., Kramer, M. A., Tracy, T. S., et al. (2010). Pharmacogenetics and Genomics, 20, 677–686.CrossRefGoogle Scholar
  49. 49.
    Huang, N., Pandey, A. V., Agrawal, V., Reardon, W., Lapunzina, P. D., Mowat, D., et al. (2005). American Journal of Human Genetics, 76, 729–749.CrossRefGoogle Scholar
  50. 50.
    Gomes, L. G., Huang, N., Agrawal, V., Mendonca, B. B., Bachega, T. A., & Miller, W. L. (2008). Journal of Clinical Endocrinology and Metabolism, 93, 2913–2916.CrossRefGoogle Scholar
  51. 51.
    Agrawal, V., Huang, N., & Miller, W. L. (2008). Pharmacogenetics and Genomics, 18, 569–576.CrossRefGoogle Scholar
  52. 52.
    Subramanian, M., Agrawal, V., Sandee, D., Tam, H. K., Miller, W. L., & Tracy, T. S. (2012). Pharmacogenetics and Genomics, 22, 590–597.CrossRefGoogle Scholar
  53. 53.
    Agrawal, V., Choi, J. H., Giacomini, K. M., & Miller, W. L. (2010). Pharmacogenetics and Genomics, 20, 611–618.CrossRefGoogle Scholar
  54. 54.
    Miller, K. K., Cai, J., Ripp, S. L., Pierce, W. M., Jr., Rushmore, T. H., & Prough, R. A. (2004). Drug Metabolism and Disposition, 32, 305–313.CrossRefGoogle Scholar
  55. 55.
    Jennewein, S., Park, H., DeJong, J. M., Long, R. M., Bollon, A. P., & Croteau, R. B. (2005). Biotechnology and Bioengineering, 89, 588–598.CrossRefGoogle Scholar
  56. 56.
    Losson, R., & Lacroute, F. (1983). Cell, 32, 371–377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ina Neunzig
    • 1
  • Maria Widjaja
    • 1
  • Frank T. Peters
    • 2
  • Hans H. Maurer
    • 3
  • Alain Hehn
    • 4
  • Frédéric Bourgaud
    • 4
  • Matthias Bureik
    • 1
  1. 1.PomBioTech GmbHSaarbrückenGermany
  2. 2.Institute of Forensic MedicineUniversity Hospital JenaJenaGermany
  3. 3.Institute of Experimental and Clinical Pharmacology and ToxicologySaarland UniversityHomburg (Saar)Germany
  4. 4.Agronomie et Environnement Nancy-Colmar, ENSAIAUniversité de Lorraine UMR 1121Vandoevre-lès-NancyFrance

Personalised recommendations